L(s) = 1 | + (−1.20 + 0.740i)2-s + (1.63 + 0.324i)3-s + (0.902 − 1.78i)4-s + (2.22 + 0.260i)5-s + (−2.20 + 0.818i)6-s + (−0.693 − 0.463i)7-s + (0.234 + 2.81i)8-s + (−0.211 − 0.0876i)9-s + (−2.86 + 1.33i)10-s + (5.70 − 1.13i)11-s + (2.05 − 2.62i)12-s + (−0.791 − 0.791i)13-s + (1.17 + 0.0445i)14-s + (3.54 + 1.14i)15-s + (−2.37 − 3.22i)16-s + (−1.86 + 3.67i)17-s + ⋯ |
L(s) = 1 | + (−0.851 + 0.523i)2-s + (0.942 + 0.187i)3-s + (0.451 − 0.892i)4-s + (0.993 + 0.116i)5-s + (−0.901 + 0.333i)6-s + (−0.261 − 0.175i)7-s + (0.0828 + 0.996i)8-s + (−0.0705 − 0.0292i)9-s + (−0.907 + 0.420i)10-s + (1.71 − 0.341i)11-s + (0.592 − 0.756i)12-s + (−0.219 − 0.219i)13-s + (0.314 + 0.0119i)14-s + (0.914 + 0.296i)15-s + (−0.592 − 0.805i)16-s + (−0.451 + 0.892i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 - 0.510i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 - 0.510i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61536 + 0.443332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61536 + 0.443332i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.20 - 0.740i)T \) |
| 5 | \( 1 + (-2.22 - 0.260i)T \) |
| 17 | \( 1 + (1.86 - 3.67i)T \) |
good | 3 | \( 1 + (-1.63 - 0.324i)T + (2.77 + 1.14i)T^{2} \) |
| 7 | \( 1 + (0.693 + 0.463i)T + (2.67 + 6.46i)T^{2} \) |
| 11 | \( 1 + (-5.70 + 1.13i)T + (10.1 - 4.20i)T^{2} \) |
| 13 | \( 1 + (0.791 + 0.791i)T + 13iT^{2} \) |
| 19 | \( 1 + (-1.74 + 0.720i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-0.716 - 3.59i)T + (-21.2 + 8.80i)T^{2} \) |
| 29 | \( 1 + (-7.13 + 4.76i)T + (11.0 - 26.7i)T^{2} \) |
| 31 | \( 1 + (0.420 - 2.11i)T + (-28.6 - 11.8i)T^{2} \) |
| 37 | \( 1 + (-0.424 + 2.13i)T + (-34.1 - 14.1i)T^{2} \) |
| 41 | \( 1 + (3.08 + 2.06i)T + (15.6 + 37.8i)T^{2} \) |
| 43 | \( 1 + (1.72 - 4.16i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + (7.04 + 7.04i)T + 47iT^{2} \) |
| 53 | \( 1 + (-8.10 + 3.35i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (4.00 - 9.67i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-8.90 - 5.94i)T + (23.3 + 56.3i)T^{2} \) |
| 67 | \( 1 + 9.22T + 67T^{2} \) |
| 71 | \( 1 + (-2.73 - 0.544i)T + (65.5 + 27.1i)T^{2} \) |
| 73 | \( 1 + (-9.15 - 13.7i)T + (-27.9 + 67.4i)T^{2} \) |
| 79 | \( 1 + (-0.721 - 3.62i)T + (-72.9 + 30.2i)T^{2} \) |
| 83 | \( 1 + (-1.61 + 0.670i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (8.32 - 8.32i)T - 89iT^{2} \) |
| 97 | \( 1 + (1.19 - 0.801i)T + (37.1 - 89.6i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02607821298375515293908468100, −9.640602552606013053218632347866, −8.780273641618127526743562363883, −8.348348172666878025176054863309, −6.96655044862868406242354479989, −6.37971444687615358374928205441, −5.44426622828805758213250342062, −3.86470862664225355229991081549, −2.60780556521602655375639515633, −1.36851558854920171247821240209,
1.39752670580209258308780512043, 2.43533824221657628128978975379, 3.32450583714437665206915099318, 4.71602453975520073932696258291, 6.38661681966547518771974159081, 6.93762302820591489785796006709, 8.141392069643907974021865544999, 9.059761228330906685470755957494, 9.283602647504945994003237554918, 10.08306045429649632215614095364