L(s) = 1 | + (−1.39 − 0.229i)2-s + (1.00 + 1.49i)3-s + (1.89 + 0.639i)4-s + (1.25 − 1.84i)5-s + (−1.05 − 2.31i)6-s + (−0.346 + 0.0689i)7-s + (−2.49 − 1.32i)8-s + (−0.0919 + 0.222i)9-s + (−2.18 + 2.28i)10-s + (−1.00 + 0.199i)11-s + (0.937 + 3.47i)12-s + 5.05i·13-s + (0.499 − 0.0167i)14-s + (4.02 + 0.0372i)15-s + (3.18 + 2.42i)16-s + (3.95 − 1.16i)17-s + ⋯ |
L(s) = 1 | + (−0.986 − 0.162i)2-s + (0.577 + 0.864i)3-s + (0.947 + 0.319i)4-s + (0.563 − 0.826i)5-s + (−0.429 − 0.946i)6-s + (−0.131 + 0.0260i)7-s + (−0.883 − 0.469i)8-s + (−0.0306 + 0.0740i)9-s + (−0.689 + 0.724i)10-s + (−0.302 + 0.0600i)11-s + (0.270 + 1.00i)12-s + 1.40i·13-s + (0.133 − 0.00448i)14-s + (1.03 + 0.00961i)15-s + (0.795 + 0.606i)16-s + (0.959 − 0.283i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 - 0.326i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.945 - 0.326i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33382 + 0.223988i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33382 + 0.223988i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.229i)T \) |
| 5 | \( 1 + (-1.25 + 1.84i)T \) |
| 17 | \( 1 + (-3.95 + 1.16i)T \) |
good | 3 | \( 1 + (-1.00 - 1.49i)T + (-1.14 + 2.77i)T^{2} \) |
| 7 | \( 1 + (0.346 - 0.0689i)T + (6.46 - 2.67i)T^{2} \) |
| 11 | \( 1 + (1.00 - 0.199i)T + (10.1 - 4.20i)T^{2} \) |
| 13 | \( 1 - 5.05iT - 13T^{2} \) |
| 19 | \( 1 + (-5.52 + 2.28i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (2.32 - 3.48i)T + (-8.80 - 21.2i)T^{2} \) |
| 29 | \( 1 + (-2.83 + 1.89i)T + (11.0 - 26.7i)T^{2} \) |
| 31 | \( 1 + (1.22 - 6.17i)T + (-28.6 - 11.8i)T^{2} \) |
| 37 | \( 1 + (-5.77 + 3.85i)T + (14.1 - 34.1i)T^{2} \) |
| 41 | \( 1 + (-4.58 + 6.86i)T + (-15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (-2.48 - 5.99i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 - 4.18iT - 47T^{2} \) |
| 53 | \( 1 + (1.73 + 0.719i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-4.26 + 10.2i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-1.42 + 2.13i)T + (-23.3 - 56.3i)T^{2} \) |
| 67 | \( 1 + (-4.31 - 4.31i)T + 67iT^{2} \) |
| 71 | \( 1 + (8.21 + 1.63i)T + (65.5 + 27.1i)T^{2} \) |
| 73 | \( 1 + (4.08 + 0.812i)T + (67.4 + 27.9i)T^{2} \) |
| 79 | \( 1 + (-2.33 + 0.465i)T + (72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (1.68 - 4.05i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-1.76 - 1.76i)T + 89iT^{2} \) |
| 97 | \( 1 + (17.7 + 3.53i)T + (89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05971573530404973585903749972, −9.470326165450717452540245153567, −9.229305535581448843063434816840, −8.232562546148888877781865766218, −7.28792226230814448144287476931, −6.15215304177852263310195150084, −4.99801456883802436173982925099, −3.82023599910812668301466488997, −2.67301321260270527302290684207, −1.25993317544595144765490366990,
1.17942284137193357727690157525, 2.50085544623729646182254368114, 3.17935388400814456695459619653, 5.49989563890686659156346262915, 6.19324037343426348988590509389, 7.29821312343151789531804946722, 7.78131981511989086421172026870, 8.442843857058795746074703696361, 9.811691054801802498659620374377, 10.13669777260724964692626746881