L(s) = 1 | + (−0.529 + 0.529i)3-s + (0.707 − 0.707i)5-s + (−3.59 − 3.59i)7-s + 2.43i·9-s + (2.90 + 2.90i)11-s + 4.66·13-s + 0.748i·15-s + (−2.39 − 3.35i)17-s − 7.16i·19-s + 3.80·21-s + (−3.15 − 3.15i)23-s − 1.00i·25-s + (−2.87 − 2.87i)27-s + (1.87 − 1.87i)29-s + (6.35 − 6.35i)31-s + ⋯ |
L(s) = 1 | + (−0.305 + 0.305i)3-s + (0.316 − 0.316i)5-s + (−1.35 − 1.35i)7-s + 0.813i·9-s + (0.876 + 0.876i)11-s + 1.29·13-s + 0.193i·15-s + (−0.580 − 0.814i)17-s − 1.64i·19-s + 0.830·21-s + (−0.658 − 0.658i)23-s − 0.200i·25-s + (−0.554 − 0.554i)27-s + (0.347 − 0.347i)29-s + (1.14 − 1.14i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.476 + 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.476 + 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.01186 - 0.602706i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.01186 - 0.602706i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (2.39 + 3.35i)T \) |
good | 3 | \( 1 + (0.529 - 0.529i)T - 3iT^{2} \) |
| 7 | \( 1 + (3.59 + 3.59i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.90 - 2.90i)T + 11iT^{2} \) |
| 13 | \( 1 - 4.66T + 13T^{2} \) |
| 19 | \( 1 + 7.16iT - 19T^{2} \) |
| 23 | \( 1 + (3.15 + 3.15i)T + 23iT^{2} \) |
| 29 | \( 1 + (-1.87 + 1.87i)T - 29iT^{2} \) |
| 31 | \( 1 + (-6.35 + 6.35i)T - 31iT^{2} \) |
| 37 | \( 1 + (-4.97 + 4.97i)T - 37iT^{2} \) |
| 41 | \( 1 + (3.90 + 3.90i)T + 41iT^{2} \) |
| 43 | \( 1 + 0.399iT - 43T^{2} \) |
| 47 | \( 1 - 8.48T + 47T^{2} \) |
| 53 | \( 1 - 3.37iT - 53T^{2} \) |
| 59 | \( 1 - 2.33iT - 59T^{2} \) |
| 61 | \( 1 + (-1.28 - 1.28i)T + 61iT^{2} \) |
| 67 | \( 1 + 9.81T + 67T^{2} \) |
| 71 | \( 1 + (9.80 - 9.80i)T - 71iT^{2} \) |
| 73 | \( 1 + (-5.53 + 5.53i)T - 73iT^{2} \) |
| 79 | \( 1 + (-2.00 - 2.00i)T + 79iT^{2} \) |
| 83 | \( 1 - 2.06iT - 83T^{2} \) |
| 89 | \( 1 - 9.63T + 89T^{2} \) |
| 97 | \( 1 + (-2.66 + 2.66i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32116236392436773459211927260, −9.583347399912910146389616680265, −8.871998727747467176928401159713, −7.51681546524988981454481665024, −6.73668232632110549740704772073, −6.02325374383459762217515605139, −4.51773800298868329987807162317, −4.09091865264166081589067272850, −2.54063997490407563530621677737, −0.70282838294999846100221352286,
1.46792483886795350775024389551, 3.14411831299555936051689261386, 3.75558866940510259882290779877, 5.78483362282967354983385550294, 6.22613197271725708040248548999, 6.54410324970873246398937360928, 8.315217436111662420487311445988, 8.904809265068700301140788029361, 9.702129340369307273369792751825, 10.57747615206511169663975835471