Properties

Label 2-680-1.1-c1-0-10
Degree $2$
Conductor $680$
Sign $1$
Analytic cond. $5.42982$
Root an. cond. $2.33019$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.29·3-s + 5-s − 1.54·7-s + 7.83·9-s − 3.54·11-s + 2.25·13-s + 3.29·15-s − 17-s + 4.83·19-s − 5.09·21-s + 1.54·23-s + 25-s + 15.9·27-s − 2.83·29-s − 7.87·31-s − 11.6·33-s − 1.54·35-s − 0.584·37-s + 7.42·39-s + 9.09·41-s + 2·43-s + 7.83·45-s − 6.83·47-s − 4.60·49-s − 3.29·51-s − 12.9·53-s − 3.54·55-s + ⋯
L(s)  = 1  + 1.90·3-s + 0.447·5-s − 0.584·7-s + 2.61·9-s − 1.06·11-s + 0.625·13-s + 0.850·15-s − 0.242·17-s + 1.11·19-s − 1.11·21-s + 0.322·23-s + 0.200·25-s + 3.06·27-s − 0.527·29-s − 1.41·31-s − 2.03·33-s − 0.261·35-s − 0.0961·37-s + 1.18·39-s + 1.42·41-s + 0.304·43-s + 1.16·45-s − 0.997·47-s − 0.657·49-s − 0.461·51-s − 1.77·53-s − 0.478·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(680\)    =    \(2^{3} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(5.42982\)
Root analytic conductor: \(2.33019\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.857778637\)
\(L(\frac12)\) \(\approx\) \(2.857778637\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 - 3.29T + 3T^{2} \)
7 \( 1 + 1.54T + 7T^{2} \)
11 \( 1 + 3.54T + 11T^{2} \)
13 \( 1 - 2.25T + 13T^{2} \)
19 \( 1 - 4.83T + 19T^{2} \)
23 \( 1 - 1.54T + 23T^{2} \)
29 \( 1 + 2.83T + 29T^{2} \)
31 \( 1 + 7.87T + 31T^{2} \)
37 \( 1 + 0.584T + 37T^{2} \)
41 \( 1 - 9.09T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 6.83T + 47T^{2} \)
53 \( 1 + 12.9T + 53T^{2} \)
59 \( 1 + 13.3T + 59T^{2} \)
61 \( 1 - 3.74T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 + 4.78T + 71T^{2} \)
73 \( 1 + 6.83T + 73T^{2} \)
79 \( 1 - 2.64T + 79T^{2} \)
83 \( 1 - 2.51T + 83T^{2} \)
89 \( 1 - 18.0T + 89T^{2} \)
97 \( 1 - 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18316755096500608595004219485, −9.371808152746956672754849208271, −8.968770927909887985323401336851, −7.83885326553108985032820717044, −7.38394132900507575432246260437, −6.13119314931470421225192530411, −4.80998595787348960503927741885, −3.50029186207369379706280188496, −2.88395302779758627262914186463, −1.71637837809531664912056149507, 1.71637837809531664912056149507, 2.88395302779758627262914186463, 3.50029186207369379706280188496, 4.80998595787348960503927741885, 6.13119314931470421225192530411, 7.38394132900507575432246260437, 7.83885326553108985032820717044, 8.968770927909887985323401336851, 9.371808152746956672754849208271, 10.18316755096500608595004219485

Graph of the $Z$-function along the critical line