L(s) = 1 | + (1.36 − 0.366i)2-s + (1.73 − i)4-s + (−0.633 − 0.633i)5-s + (1.99 − 2i)8-s + (−1.5 − 2.59i)9-s + (−1.09 − 0.633i)10-s + (1.99 − 3.46i)16-s + (6.86 − 3.96i)17-s + (−3 − 3i)18-s + (−1.73 − 0.464i)20-s − 4.19i·25-s + (−3.33 + 5.76i)29-s + (1.46 − 5.46i)32-s + (7.92 − 7.92i)34-s + (−5.19 − 3i)36-s + (3.13 + 11.6i)37-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.5i)4-s + (−0.283 − 0.283i)5-s + (0.707 − 0.707i)8-s + (−0.5 − 0.866i)9-s + (−0.347 − 0.200i)10-s + (0.499 − 0.866i)16-s + (1.66 − 0.961i)17-s + (−0.707 − 0.707i)18-s + (−0.387 − 0.103i)20-s − 0.839i·25-s + (−0.618 + 1.07i)29-s + (0.258 − 0.965i)32-s + (1.35 − 1.35i)34-s + (−0.866 − 0.5i)36-s + (0.515 + 1.92i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.302 + 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.302 + 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.07007 - 1.51562i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.07007 - 1.51562i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.366i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.633 + 0.633i)T + 5iT^{2} \) |
| 7 | \( 1 + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-6.86 + 3.96i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.33 - 5.76i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + (-3.13 - 11.6i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (9.96 - 2.66i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 10.4T + 53T^{2} \) |
| 59 | \( 1 + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.69 + 4.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (9.83 - 9.83i)T - 73iT^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + (1.09 + 4.09i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (1.83 - 6.83i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36970222558791067647770631579, −9.693558629599903785679809560609, −8.577797442541248372078828955120, −7.51532998502724292039169780221, −6.59651857760353406841063445200, −5.64140395558167999835712594861, −4.82780905752040360129780298657, −3.63104483106597276468347826330, −2.86306291940762683277127394723, −1.09157911132713987540475446708,
1.99520871818427156502512561399, 3.24830923870221037915872958080, 4.11016008937528472399066149942, 5.43481401333959878685146754758, 5.85654136576916426184962947751, 7.24420586333685461808375077299, 7.75830761449153130311498692771, 8.670021898067287111690284572404, 10.11706235298939145351870093695, 10.82548759661245888997950999281