L(s) = 1 | + (−1.36 + 0.366i)2-s + (1.73 − i)4-s + (0.633 + 0.633i)5-s + (−1.99 + 2i)8-s + (−1.5 − 2.59i)9-s + (−1.09 − 0.633i)10-s + (1.99 − 3.46i)16-s + (6.86 − 3.96i)17-s + (3 + 3i)18-s + (1.73 + 0.464i)20-s − 4.19i·25-s + (−3.33 + 5.76i)29-s + (−1.46 + 5.46i)32-s + (−7.92 + 7.92i)34-s + (−5.19 − 3i)36-s + (−3.13 − 11.6i)37-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.5i)4-s + (0.283 + 0.283i)5-s + (−0.707 + 0.707i)8-s + (−0.5 − 0.866i)9-s + (−0.347 − 0.200i)10-s + (0.499 − 0.866i)16-s + (1.66 − 0.961i)17-s + (0.707 + 0.707i)18-s + (0.387 + 0.103i)20-s − 0.839i·25-s + (−0.618 + 1.07i)29-s + (−0.258 + 0.965i)32-s + (−1.35 + 1.35i)34-s + (−0.866 − 0.5i)36-s + (−0.515 − 1.92i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 + 0.533i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.846 + 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.923064 - 0.266537i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.923064 - 0.266537i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.366i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.633 - 0.633i)T + 5iT^{2} \) |
| 7 | \( 1 + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-6.86 + 3.96i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.33 - 5.76i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + (3.13 + 11.6i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-9.96 + 2.66i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 10.4T + 53T^{2} \) |
| 59 | \( 1 + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.69 + 4.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-9.83 + 9.83i)T - 73iT^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + (-1.09 - 4.09i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.83 + 6.83i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30317985145771213839658726220, −9.396139522412526130790625498783, −8.921113048777513909476075670221, −7.74050963857889941681364208231, −7.08974936897077902993876912209, −6.02928146702536396973022748388, −5.38170768519088933628423455010, −3.54551867325698144782463907228, −2.44079524416668977522201047399, −0.78551612944828513337145086083,
1.31485171859850639601161700630, 2.55952379228309053592590388128, 3.76844635330850494666538306762, 5.34890766512252320195079206105, 6.12523187737391858692308823659, 7.43850831718972994453358134870, 8.051397596873795694761082867750, 8.826117396074277961481511782011, 9.832026810634489408890965357247, 10.36852236584503445338688809247