Properties

Label 2-26e2-52.47-c1-0-14
Degree $2$
Conductor $676$
Sign $-0.289 - 0.957i$
Analytic cond. $5.39788$
Root an. cond. $2.32333$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + i)2-s + 2i·4-s + (0.633 + 0.633i)5-s + (−2 + 2i)8-s + 3·9-s + 1.26i·10-s − 4·16-s + 7.92i·17-s + (3 + 3i)18-s + (−1.26 + 1.26i)20-s − 4.19i·25-s + 6.66·29-s + (−4 − 4i)32-s + (−7.92 + 7.92i)34-s + 6i·36-s + (−8.56 + 8.56i)37-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + i·4-s + (0.283 + 0.283i)5-s + (−0.707 + 0.707i)8-s + 9-s + 0.400i·10-s − 16-s + 1.92i·17-s + (0.707 + 0.707i)18-s + (−0.283 + 0.283i)20-s − 0.839i·25-s + 1.23·29-s + (−0.707 − 0.707i)32-s + (−1.35 + 1.35i)34-s + i·36-s + (−1.40 + 1.40i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 - 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(676\)    =    \(2^{2} \cdot 13^{2}\)
Sign: $-0.289 - 0.957i$
Analytic conductor: \(5.39788\)
Root analytic conductor: \(2.32333\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{676} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 676,\ (\ :1/2),\ -0.289 - 0.957i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.37074 + 1.84722i\)
\(L(\frac12)\) \(\approx\) \(1.37074 + 1.84722i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1 - i)T \)
13 \( 1 \)
good3 \( 1 - 3T^{2} \)
5 \( 1 + (-0.633 - 0.633i)T + 5iT^{2} \)
7 \( 1 + 7iT^{2} \)
11 \( 1 + 11iT^{2} \)
17 \( 1 - 7.92iT - 17T^{2} \)
19 \( 1 - 19iT^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 6.66T + 29T^{2} \)
31 \( 1 - 31iT^{2} \)
37 \( 1 + (8.56 - 8.56i)T - 37iT^{2} \)
41 \( 1 + (7.29 + 7.29i)T + 41iT^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47iT^{2} \)
53 \( 1 - 10.4T + 53T^{2} \)
59 \( 1 + 59iT^{2} \)
61 \( 1 - 5.39T + 61T^{2} \)
67 \( 1 - 67iT^{2} \)
71 \( 1 - 71iT^{2} \)
73 \( 1 + (-9.83 + 9.83i)T - 73iT^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 - 83iT^{2} \)
89 \( 1 + (-3 + 3i)T - 89iT^{2} \)
97 \( 1 + (-5 - 5i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55718693452663009977507021609, −10.09911644362222081610431830161, −8.679183211763780224943003556383, −8.115857080538664060196299931839, −6.89942503538089581670388152997, −6.46053969607485877181362253459, −5.35764053777704347251619726378, −4.32698880276399744655507341226, −3.45784894961351851330691804477, −1.96632249868548791740683998888, 1.07368096187355857931071046488, 2.40908932020685978861185322947, 3.61027235138642922954093436925, 4.75335755791577683468925877171, 5.33775022938770674838926295072, 6.63422204263799599980964857712, 7.35257024620133305392111825298, 8.849435604431356250541579778301, 9.624073778916951521164943322815, 10.24016760911877898118413167721

Graph of the $Z$-function along the critical line