L(s) = 1 | + (0.457 + 0.264i)2-s + (−1.86 − 3.22i)4-s + (−1.38 + 2.39i)7-s − 4.08i·8-s + (7.99 + 4.61i)11-s + (−6.79 − 11.7i)13-s + (−1.26 + 0.731i)14-s + (−6.36 + 11.0i)16-s − 12.2i·17-s − 20.2·19-s + (2.43 + 4.22i)22-s + (−2.05 + 1.18i)23-s − 7.18i·26-s + 10.2·28-s + (30.2 + 17.4i)29-s + ⋯ |
L(s) = 1 | + (0.228 + 0.132i)2-s + (−0.465 − 0.805i)4-s + (−0.197 + 0.342i)7-s − 0.510i·8-s + (0.726 + 0.419i)11-s + (−0.522 − 0.905i)13-s + (−0.0904 + 0.0522i)14-s + (−0.397 + 0.688i)16-s − 0.718i·17-s − 1.06·19-s + (0.110 + 0.192i)22-s + (−0.0892 + 0.0515i)23-s − 0.276i·26-s + 0.367·28-s + (1.04 + 0.601i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.00852i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.00852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.3460774049\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3460774049\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.457 - 0.264i)T + (2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (1.38 - 2.39i)T + (-24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-7.99 - 4.61i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (6.79 + 11.7i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 12.2iT - 289T^{2} \) |
| 19 | \( 1 + 20.2T + 361T^{2} \) |
| 23 | \( 1 + (2.05 - 1.18i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-30.2 - 17.4i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (14.7 + 25.5i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 64.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + (34.5 - 19.9i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (33.7 - 58.5i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (80.8 + 46.6i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 9.82iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (50.6 - 29.2i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-7.75 + 13.4i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-7.78 - 13.4i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 53.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 23.6T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-17.2 + 29.9i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (65.2 + 37.6i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 29.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (31.1 - 54.0i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.898188317464680805056081922317, −9.109518722351270878201401847367, −8.256911217951841876762208409698, −6.97006849944573660692113008289, −6.25858557128659532460998169184, −5.21344242487303332622850571942, −4.51244967766986156311414357959, −3.19370028467557535174468491081, −1.68983435835903265665761853094, −0.11224429400179295998414035093,
1.90933799939115721989664211274, 3.36901458168710350375858477466, 4.11613755794203260715131891822, 5.04089682468210736878829839143, 6.45588348959467466110353162174, 7.10728251018830891647240951566, 8.402690216500962605022195301525, 8.760345849378072802284287415407, 9.857668171968093388147146067228, 10.75477465518636463443722433453