| L(s) = 1 | + (0.696 + 1.20i)2-s + (1.03 − 1.78i)4-s + (−7.63 + 4.41i)7-s + 8.43·8-s + (0.805 − 0.464i)11-s + (−21.2 − 12.2i)13-s + (−10.6 − 6.13i)14-s + (1.74 + 3.02i)16-s − 18.3·17-s + 5.58·19-s + (1.12 + 0.647i)22-s + (−11.9 + 20.6i)23-s − 34.0i·26-s + 18.1i·28-s + (−23.7 + 13.7i)29-s + ⋯ |
| L(s) = 1 | + (0.348 + 0.602i)2-s + (0.257 − 0.446i)4-s + (−1.09 + 0.630i)7-s + 1.05·8-s + (0.0732 − 0.0422i)11-s + (−1.63 − 0.941i)13-s + (−0.759 − 0.438i)14-s + (0.109 + 0.189i)16-s − 1.07·17-s + 0.294·19-s + (0.0509 + 0.0294i)22-s + (−0.517 + 0.896i)23-s − 1.31i·26-s + 0.649i·28-s + (−0.819 + 0.473i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.824 + 0.565i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.1506321194\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1506321194\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (-0.696 - 1.20i)T + (-2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (7.63 - 4.41i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-0.805 + 0.464i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (21.2 + 12.2i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 18.3T + 289T^{2} \) |
| 19 | \( 1 - 5.58T + 361T^{2} \) |
| 23 | \( 1 + (11.9 - 20.6i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (23.7 - 13.7i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-4.66 + 8.08i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 24.7iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-6.45 - 3.72i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (30.7 - 17.7i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-0.172 - 0.298i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 81.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + (65.9 + 38.0i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (29.6 + 51.3i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-70.9 - 40.9i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 37.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 3.49iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (62.0 + 107. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-27.9 - 48.4i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 6.78iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-101. + 58.5i)T + (4.70e3 - 8.14e3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.766110147157446759258681358235, −9.351984841544267687092932866092, −7.917358146146191656869907994642, −7.15990391192577323320957483094, −6.28957504387482313140867798561, −5.53348761507860963527001844167, −4.68946882701209429706834009920, −3.20071984729527856730092978768, −2.06055297309524508479067609256, −0.04245747338016859779697703671,
2.00597193935420619084203380854, 2.96740349663810338688156615019, 4.07198093147985088530659129609, 4.77793714321100216255546507526, 6.46937230783043538979741465846, 7.01863341350541665717996982078, 7.88046269260497990007981671534, 9.167158716557622715437834685712, 9.915332931279917746314594697650, 10.67326266093377075062562830318