L(s) = 1 | + (−1.5 − 0.866i)3-s + (6.36 − 3.67i)5-s + (−6.34 − 2.96i)7-s + (1.5 + 2.59i)9-s + (−5.90 + 10.2i)11-s + 22.8i·13-s − 12.7·15-s + (18.3 + 10.5i)17-s + (18.3 − 10.5i)19-s + (6.94 + 9.93i)21-s + (17.1 + 29.6i)23-s + (14.4 − 25.0i)25-s − 5.19i·27-s + 8.51·29-s + (−9.70 − 5.60i)31-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.288i)3-s + (1.27 − 0.734i)5-s + (−0.905 − 0.423i)7-s + (0.166 + 0.288i)9-s + (−0.537 + 0.930i)11-s + 1.75i·13-s − 0.848·15-s + (1.07 + 0.621i)17-s + (0.964 − 0.556i)19-s + (0.330 + 0.473i)21-s + (0.744 + 1.28i)23-s + (0.578 − 1.00i)25-s − 0.192i·27-s + 0.293·29-s + (−0.312 − 0.180i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.211i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.977 - 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.706089859\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.706089859\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.5 + 0.866i)T \) |
| 7 | \( 1 + (6.34 + 2.96i)T \) |
good | 5 | \( 1 + (-6.36 + 3.67i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (5.90 - 10.2i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 22.8iT - 169T^{2} \) |
| 17 | \( 1 + (-18.3 - 10.5i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-18.3 + 10.5i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-17.1 - 29.6i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 8.51T + 841T^{2} \) |
| 31 | \( 1 + (9.70 + 5.60i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (21.6 + 37.5i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 10.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 2.53T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-60.2 + 34.7i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-17.4 + 30.1i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-45.7 - 26.3i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-22.1 + 12.7i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-16.3 + 28.2i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 107.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-74.7 - 43.1i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-66.7 - 115. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 26.5iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (46.0 - 26.5i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 168. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03467165414559450064800777017, −9.624167568632621929563561874727, −8.915220911397681927489890027613, −7.36778442132363933123348366274, −6.83990382970980341702821001301, −5.71003623075234290692857945503, −5.12489060239179985087740526021, −3.85071204256351124325612751975, −2.20118838132061180812321864673, −1.16066480057997665261698765461,
0.77196361466814635008695407540, 2.84138795664518542994759576905, 3.17936773778631058439266738190, 5.27755705384119565854924516785, 5.69431758862819692733323483159, 6.42535911644141995785960050777, 7.53354499068352390195602172773, 8.696314785104844129113194594551, 9.752405097591264889800720478914, 10.27542762887441549485339182845