L(s) = 1 | + (−1.5 − 0.866i)3-s + (−2.13 + 1.23i)5-s + (−3.79 + 5.88i)7-s + (1.5 + 2.59i)9-s + (−7.39 + 12.8i)11-s − 11.4i·13-s + 4.27·15-s + (−22.0 − 12.7i)17-s + (28.4 − 16.4i)19-s + (10.7 − 5.53i)21-s + (2.87 + 4.97i)23-s + (−9.44 + 16.3i)25-s − 5.19i·27-s + 51.5·29-s + (23.2 + 13.4i)31-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.288i)3-s + (−0.427 + 0.246i)5-s + (−0.541 + 0.840i)7-s + (0.166 + 0.288i)9-s + (−0.672 + 1.16i)11-s − 0.884i·13-s + 0.285·15-s + (−1.29 − 0.749i)17-s + (1.49 − 0.865i)19-s + (0.513 − 0.263i)21-s + (0.124 + 0.216i)23-s + (−0.377 + 0.654i)25-s − 0.192i·27-s + 1.77·29-s + (0.750 + 0.433i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0774 + 0.996i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0774 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6899296891\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6899296891\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.5 + 0.866i)T \) |
| 7 | \( 1 + (3.79 - 5.88i)T \) |
good | 5 | \( 1 + (2.13 - 1.23i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (7.39 - 12.8i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + 11.4iT - 169T^{2} \) |
| 17 | \( 1 + (22.0 + 12.7i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-28.4 + 16.4i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-2.87 - 4.97i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 51.5T + 841T^{2} \) |
| 31 | \( 1 + (-23.2 - 13.4i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (30.3 + 52.6i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 65.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 54.6T + 1.84e3T^{2} \) |
| 47 | \( 1 + (21.7 - 12.5i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-15.0 + 26.0i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (8.80 + 5.08i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-72.8 + 42.0i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-58.0 + 100. i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 25.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + (1.00 + 0.578i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (36.2 + 62.8i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 132. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (18.0 - 10.3i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 30.8iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10048438774679337152657446936, −9.339027946281235023805910030501, −8.297136873167237231803717628763, −7.22398173076658741689332318335, −6.76200305562476557737931435734, −5.39521210398933562822468575495, −4.87011854136575564353910103064, −3.23752119952164981302660351676, −2.26566226984480692552301904457, −0.31890600983303957756664714608,
1.03907579264168858977624662755, 3.02708827877209863847816925604, 4.06804143754045729498932658968, 4.89178887751846311693154713106, 6.18477577442851585987414829786, 6.75763800102733393513712003475, 8.037910388994447799836796775144, 8.646426664091594889204493369329, 9.997560071540097683860878873405, 10.31802251407968941467493675096