| L(s)  = 1 | + (−1.5 − 0.866i)3-s     + (3.60 − 2.08i)5-s     + (3.89 − 5.81i)7-s     + (1.5 + 2.59i)9-s     + (3.55 − 6.16i)11-s     + 2.34i·13-s     − 7.21·15-s     + (9.39 + 5.42i)17-s     + (20.0 − 11.5i)19-s     + (−10.8 + 5.35i)21-s     + (−6.35 − 11.0i)23-s     + (−3.82 + 6.61i)25-s     − 5.19i·27-s     − 2.42·29-s     + (−16.7 − 9.69i)31-s    + ⋯ | 
| L(s)  = 1 | + (−0.5 − 0.288i)3-s     + (0.721 − 0.416i)5-s     + (0.555 − 0.831i)7-s     + (0.166 + 0.288i)9-s     + (0.323 − 0.560i)11-s     + 0.180i·13-s     − 0.481·15-s     + (0.552 + 0.319i)17-s     + (1.05 − 0.609i)19-s     + (−0.517 + 0.255i)21-s     + (−0.276 − 0.478i)23-s     + (−0.152 + 0.264i)25-s     − 0.192i·27-s     − 0.0836·29-s     + (−0.541 − 0.312i)31-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0608 + 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0608 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{3}{2})\) | \(\approx\) | \(1.851625272\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.851625272\) | 
    
        
      | \(L(2)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 3 | \( 1 + (1.5 + 0.866i)T \) | 
|  | 7 | \( 1 + (-3.89 + 5.81i)T \) | 
| good | 5 | \( 1 + (-3.60 + 2.08i)T + (12.5 - 21.6i)T^{2} \) | 
|  | 11 | \( 1 + (-3.55 + 6.16i)T + (-60.5 - 104. i)T^{2} \) | 
|  | 13 | \( 1 - 2.34iT - 169T^{2} \) | 
|  | 17 | \( 1 + (-9.39 - 5.42i)T + (144.5 + 250. i)T^{2} \) | 
|  | 19 | \( 1 + (-20.0 + 11.5i)T + (180.5 - 312. i)T^{2} \) | 
|  | 23 | \( 1 + (6.35 + 11.0i)T + (-264.5 + 458. i)T^{2} \) | 
|  | 29 | \( 1 + 2.42T + 841T^{2} \) | 
|  | 31 | \( 1 + (16.7 + 9.69i)T + (480.5 + 832. i)T^{2} \) | 
|  | 37 | \( 1 + (-2.81 - 4.87i)T + (-684.5 + 1.18e3i)T^{2} \) | 
|  | 41 | \( 1 - 32.1iT - 1.68e3T^{2} \) | 
|  | 43 | \( 1 - 0.536T + 1.84e3T^{2} \) | 
|  | 47 | \( 1 + (-2.50 + 1.44i)T + (1.10e3 - 1.91e3i)T^{2} \) | 
|  | 53 | \( 1 + (-26.9 + 46.6i)T + (-1.40e3 - 2.43e3i)T^{2} \) | 
|  | 59 | \( 1 + (72.8 + 42.0i)T + (1.74e3 + 3.01e3i)T^{2} \) | 
|  | 61 | \( 1 + (-81.5 + 47.1i)T + (1.86e3 - 3.22e3i)T^{2} \) | 
|  | 67 | \( 1 + (-44.0 + 76.3i)T + (-2.24e3 - 3.88e3i)T^{2} \) | 
|  | 71 | \( 1 - 62.2T + 5.04e3T^{2} \) | 
|  | 73 | \( 1 + (45.3 + 26.2i)T + (2.66e3 + 4.61e3i)T^{2} \) | 
|  | 79 | \( 1 + (42.1 + 73.0i)T + (-3.12e3 + 5.40e3i)T^{2} \) | 
|  | 83 | \( 1 + 77.3iT - 6.88e3T^{2} \) | 
|  | 89 | \( 1 + (123. - 71.2i)T + (3.96e3 - 6.85e3i)T^{2} \) | 
|  | 97 | \( 1 + 38.0iT - 9.40e3T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.08225486213424567807449970382, −9.366528643559142719378168116333, −8.275102650987832293441254364490, −7.43252750546382765338579892953, −6.47293381197749016686480137267, −5.54570460252551063784835927288, −4.74627069266497908189464458408, −3.50331404473511937759229465482, −1.80921141574753231153097730052, −0.77748717710232078811951857595, 
1.46405069529457281808674053370, 2.69088378616173031840532096120, 4.05291672545301325572034424065, 5.39997121798235298868709729099, 5.70918117226822605620010878477, 6.91021608997303562772192964540, 7.83203104266614466984704632024, 8.995717974301700019265794937465, 9.763335341764668908548216475384, 10.37381520044288079799042597912
