Properties

Label 2-672-7.3-c2-0-13
Degree $2$
Conductor $672$
Sign $0.962 - 0.269i$
Analytic cond. $18.3106$
Root an. cond. $4.27909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.5 − 0.866i)3-s + (−0.452 + 0.261i)5-s + (6.50 + 2.57i)7-s + (1.5 + 2.59i)9-s + (1.56 − 2.70i)11-s − 0.897i·13-s + 0.905·15-s + (−4.81 − 2.77i)17-s + (4.00 − 2.31i)19-s + (−7.52 − 9.50i)21-s + (8.67 + 15.0i)23-s + (−12.3 + 21.4i)25-s − 5.19i·27-s − 19.3·29-s + (42.7 + 24.6i)31-s + ⋯
L(s)  = 1  + (−0.5 − 0.288i)3-s + (−0.0905 + 0.0523i)5-s + (0.929 + 0.368i)7-s + (0.166 + 0.288i)9-s + (0.142 − 0.246i)11-s − 0.0690i·13-s + 0.0603·15-s + (−0.282 − 0.163i)17-s + (0.210 − 0.121i)19-s + (−0.358 − 0.452i)21-s + (0.377 + 0.653i)23-s + (−0.494 + 0.856i)25-s − 0.192i·27-s − 0.668·29-s + (1.37 + 0.796i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.269i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.962 - 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $0.962 - 0.269i$
Analytic conductor: \(18.3106\)
Root analytic conductor: \(4.27909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{672} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 672,\ (\ :1),\ 0.962 - 0.269i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.645392419\)
\(L(\frac12)\) \(\approx\) \(1.645392419\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.5 + 0.866i)T \)
7 \( 1 + (-6.50 - 2.57i)T \)
good5 \( 1 + (0.452 - 0.261i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (-1.56 + 2.70i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + 0.897iT - 169T^{2} \)
17 \( 1 + (4.81 + 2.77i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-4.00 + 2.31i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-8.67 - 15.0i)T + (-264.5 + 458. i)T^{2} \)
29 \( 1 + 19.3T + 841T^{2} \)
31 \( 1 + (-42.7 - 24.6i)T + (480.5 + 832. i)T^{2} \)
37 \( 1 + (4.76 + 8.25i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + 2.51iT - 1.68e3T^{2} \)
43 \( 1 - 54.4T + 1.84e3T^{2} \)
47 \( 1 + (-40.4 + 23.3i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (-14.9 + 25.8i)T + (-1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (-65.7 - 37.9i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-53.7 + 31.0i)T + (1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (11.5 - 19.9i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 - 53.8T + 5.04e3T^{2} \)
73 \( 1 + (-80.5 - 46.5i)T + (2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (4.49 + 7.78i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 - 9.29iT - 6.88e3T^{2} \)
89 \( 1 + (-23.8 + 13.7i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 - 117. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53811643193373238982802924384, −9.429305803262671218172826822011, −8.556110338384303459884340196268, −7.66317589409268705713561447014, −6.86322482913335890887839952375, −5.69199702016053658534647130999, −5.05599571773735792806725289192, −3.84391694958869381950588606197, −2.35981585884305605985638213438, −1.06198980512104460659716111273, 0.818438142706325462679552611531, 2.31444780857791526685578279235, 3.99699313024408598836877436584, 4.63975930409230720467376066907, 5.69024954575613026659112673797, 6.68060221855019445152032660531, 7.67776141851407598672712255002, 8.474929827622751197619230054472, 9.518970611683322804751474514003, 10.38274614178158736866581131707

Graph of the $Z$-function along the critical line