Properties

Label 2-672-12.11-c1-0-4
Degree $2$
Conductor $672$
Sign $0.577 - 0.816i$
Analytic cond. $5.36594$
Root an. cond. $2.31645$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.292 − 1.70i)3-s + 3.41i·5-s i·7-s + (−2.82 + i)9-s − 2·11-s + 3.41·13-s + (5.82 − i)15-s + 4.82i·17-s + 6.24i·19-s + (−1.70 + 0.292i)21-s + 4·23-s − 6.65·25-s + (2.53 + 4.53i)27-s + 4.82i·29-s − 1.17i·31-s + ⋯
L(s)  = 1  + (−0.169 − 0.985i)3-s + 1.52i·5-s − 0.377i·7-s + (−0.942 + 0.333i)9-s − 0.603·11-s + 0.946·13-s + (1.50 − 0.258i)15-s + 1.17i·17-s + 1.43i·19-s + (−0.372 + 0.0639i)21-s + 0.834·23-s − 1.33·25-s + (0.487 + 0.872i)27-s + 0.896i·29-s − 0.210i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $0.577 - 0.816i$
Analytic conductor: \(5.36594\)
Root analytic conductor: \(2.31645\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{672} (575, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 672,\ (\ :1/2),\ 0.577 - 0.816i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.05658 + 0.546927i\)
\(L(\frac12)\) \(\approx\) \(1.05658 + 0.546927i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.292 + 1.70i)T \)
7 \( 1 + iT \)
good5 \( 1 - 3.41iT - 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 3.41T + 13T^{2} \)
17 \( 1 - 4.82iT - 17T^{2} \)
19 \( 1 - 6.24iT - 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 4.82iT - 29T^{2} \)
31 \( 1 + 1.17iT - 31T^{2} \)
37 \( 1 + 0.828T + 37T^{2} \)
41 \( 1 + 10iT - 41T^{2} \)
43 \( 1 - 10.4iT - 43T^{2} \)
47 \( 1 + 1.65T + 47T^{2} \)
53 \( 1 - 13.3iT - 53T^{2} \)
59 \( 1 - 6.24T + 59T^{2} \)
61 \( 1 - 14.2T + 61T^{2} \)
67 \( 1 + 9.31iT - 67T^{2} \)
71 \( 1 - 0.343T + 71T^{2} \)
73 \( 1 + 3.17T + 73T^{2} \)
79 \( 1 + 4iT - 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 - 7.65iT - 89T^{2} \)
97 \( 1 - 5.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80555266010315370079183318194, −10.12279875913702050195185191247, −8.629030021855511485421250317282, −7.83217065478206207569347636582, −7.08118385336549422324909323453, −6.30727769041174894730966100778, −5.60962065453218825339127858738, −3.79791086170925282233638470151, −2.88018013703640576032443937339, −1.57797449405011527201244697217, 0.67680233468151085231554848849, 2.68225124675847116219726995264, 4.02368219379534441020657121560, 5.10664896202658723678167964576, 5.29865505945942911404291085520, 6.69862903310707563641387628365, 8.167046090181951819675347406988, 8.823094579369958037426166274041, 9.353578818386803860131134475006, 10.23922054085028677562014067114

Graph of the $Z$-function along the critical line