L(s) = 1 | + (−0.866 − 1.5i)3-s + (−1.32 + 2.29i)5-s + (2.29 − 1.32i)7-s + (−1.5 + 2.59i)9-s + (−0.866 + 0.5i)11-s − 3.46i·13-s + 4.58·15-s + (2.64 + 4.58i)17-s + (4.58 + 2.64i)19-s + (−3.96 − 2.29i)21-s + (1.73 + i)23-s + (−1 − 1.73i)25-s + 5.19·27-s − 4.58i·29-s + (6.87 − 3.96i)31-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)3-s + (−0.591 + 1.02i)5-s + (0.866 − 0.499i)7-s + (−0.5 + 0.866i)9-s + (−0.261 + 0.150i)11-s − 0.960i·13-s + 1.18·15-s + (0.641 + 1.11i)17-s + (1.05 + 0.606i)19-s + (−0.866 − 0.500i)21-s + (0.361 + 0.208i)23-s + (−0.200 − 0.346i)25-s + 1.00·27-s − 0.850i·29-s + (1.23 − 0.712i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23832 - 0.0785841i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23832 - 0.0785841i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 + 1.5i)T \) |
| 7 | \( 1 + (-2.29 + 1.32i)T \) |
good | 5 | \( 1 + (1.32 - 2.29i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (-2.64 - 4.58i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.58 - 2.64i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.73 - i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.58iT - 29T^{2} \) |
| 31 | \( 1 + (-6.87 + 3.96i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3 - 5.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 10.5T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-3.46 + 6i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.96 - 2.29i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.06 + 10.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-12 - 6.92i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.58 - 7.93i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4iT - 71T^{2} \) |
| 73 | \( 1 + (6 - 3.46i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.29 - 3.96i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.73T + 83T^{2} \) |
| 89 | \( 1 + (2.64 - 4.58i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8.66iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62601129600572412760844432426, −10.01497941286463823377726670397, −8.167375356256971822704097905441, −7.84861006244785286832304709117, −7.13493541977314768136236677908, −6.07386963284428799903782780652, −5.20720435107478518313825418159, −3.83922101874522064698186962343, −2.64307183575891835413264397995, −1.10699186861306373941749029936,
0.958659548847434545362513805522, 2.95086395418404648738431891695, 4.37600914229892118006587994266, 4.91561507610999597154916023165, 5.63072805536699132908888149997, 7.04642266516502734788713202217, 8.093989907080329236785504553659, 9.030678660540712306882318682271, 9.388694553312725847188069981547, 10.67420239231442029133504563128