Properties

Label 8-672e4-1.1-c1e4-0-6
Degree $8$
Conductor $203928109056$
Sign $1$
Analytic cond. $829.059$
Root an. cond. $2.31645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 3·9-s + 2·17-s + 11·25-s − 6·37-s + 32·41-s − 6·45-s − 2·49-s + 42·53-s − 42·61-s + 30·73-s + 4·85-s − 26·89-s − 14·101-s − 10·109-s + 3·121-s + 38·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 6·153-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 0.894·5-s − 9-s + 0.485·17-s + 11/5·25-s − 0.986·37-s + 4.99·41-s − 0.894·45-s − 2/7·49-s + 5.76·53-s − 5.37·61-s + 3.51·73-s + 0.433·85-s − 2.75·89-s − 1.39·101-s − 0.957·109-s + 3/11·121-s + 3.39·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.485·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(829.059\)
Root analytic conductor: \(2.31645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.365465310\)
\(L(\frac12)\) \(\approx\) \(3.365465310\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 - T - 4 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 3 T^{2} - 112 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - T - 16 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$$\times$$C_2^2$ \( ( 1 + 11 T^{2} + p^{2} T^{4} )( 1 + 26 T^{2} + p^{2} T^{4} ) \)
23$C_2^3$ \( 1 + 21 T^{2} - 88 T^{4} + 21 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^3$ \( 1 - 19 T^{2} - 600 T^{4} - 19 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 + 3 T - 28 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
43$C_2$ \( ( 1 + p T^{2} )^{4} \)
47$C_2^3$ \( 1 - 91 T^{2} + 6072 T^{4} - 91 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 21 T + 200 T^{2} - 21 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 43 T^{2} - 1632 T^{4} - 43 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 21 T + 208 T^{2} + 21 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 109 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2^2$ \( ( 1 - 138 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 15 T + 148 T^{2} - 15 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 - 155 T^{2} + 17784 T^{4} - 155 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 13 T + 80 T^{2} + 13 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 182 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48245719645510557073892918207, −7.37135548281743268643585064414, −7.04232450335560272296397628603, −6.91296687805008168177789066824, −6.67089949470635481937626698001, −6.20917660725994702488636681610, −6.18320374690058594629262487000, −5.80757646793603827737710735017, −5.61520819974360073009925296019, −5.46075418081510686421819452661, −5.42960561111130695834852851574, −4.93306909201831707425399751582, −4.57803508742264549528698043728, −4.33049066356088925436563635132, −4.11882512265963944419009564909, −4.00246640870059927783486114069, −3.24538114315672058162579459365, −3.09771292707196090308183664817, −3.08476327213726297135428719840, −2.41907790935511280199417700708, −2.26302390163103273836502693904, −2.21894742463176567994385859965, −1.21092481573229219587400814192, −1.17360475900705210876994840932, −0.57546424641085421603792033567, 0.57546424641085421603792033567, 1.17360475900705210876994840932, 1.21092481573229219587400814192, 2.21894742463176567994385859965, 2.26302390163103273836502693904, 2.41907790935511280199417700708, 3.08476327213726297135428719840, 3.09771292707196090308183664817, 3.24538114315672058162579459365, 4.00246640870059927783486114069, 4.11882512265963944419009564909, 4.33049066356088925436563635132, 4.57803508742264549528698043728, 4.93306909201831707425399751582, 5.42960561111130695834852851574, 5.46075418081510686421819452661, 5.61520819974360073009925296019, 5.80757646793603827737710735017, 6.18320374690058594629262487000, 6.20917660725994702488636681610, 6.67089949470635481937626698001, 6.91296687805008168177789066824, 7.04232450335560272296397628603, 7.37135548281743268643585064414, 7.48245719645510557073892918207

Graph of the $Z$-function along the critical line