L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.225 + 0.390i)5-s + (−0.458 − 2.60i)7-s + (0.499 − 0.866i)9-s + (0.360 + 0.623i)11-s − 3.48·13-s − 0.451i·15-s + (−3.55 + 2.05i)17-s + (−3.97 − 2.29i)19-s + (1.69 + 2.02i)21-s + (0.0459 + 0.0265i)23-s + (2.39 + 4.15i)25-s + 0.999i·27-s − 7.85i·29-s + (−4.58 − 7.93i)31-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.288i)3-s + (−0.100 + 0.174i)5-s + (−0.173 − 0.984i)7-s + (0.166 − 0.288i)9-s + (0.108 + 0.188i)11-s − 0.967·13-s − 0.116i·15-s + (−0.862 + 0.498i)17-s + (−0.912 − 0.526i)19-s + (0.370 + 0.442i)21-s + (0.00957 + 0.00552i)23-s + (0.479 + 0.830i)25-s + 0.192i·27-s − 1.45i·29-s + (−0.823 − 1.42i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.135615 - 0.356059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.135615 - 0.356059i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.458 + 2.60i)T \) |
good | 5 | \( 1 + (0.225 - 0.390i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.360 - 0.623i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.48T + 13T^{2} \) |
| 17 | \( 1 + (3.55 - 2.05i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.97 + 2.29i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.0459 - 0.0265i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 7.85iT - 29T^{2} \) |
| 31 | \( 1 + (4.58 + 7.93i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (7.51 + 4.33i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 3.94iT - 41T^{2} \) |
| 43 | \( 1 + 5.17T + 43T^{2} \) |
| 47 | \( 1 + (-0.460 + 0.796i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.71 + 1.56i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.86 + 2.80i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.54 + 4.41i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.93 - 8.54i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.1iT - 71T^{2} \) |
| 73 | \( 1 + (3.33 - 1.92i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (8.40 + 4.85i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9.53iT - 83T^{2} \) |
| 89 | \( 1 + (12.6 + 7.28i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21811758200352026409316885684, −9.538439730179748164626693011605, −8.467542557033586747716563126645, −7.26530234510081101362900464223, −6.79008685514207509454158739783, −5.61873151318206004169120893398, −4.48873217907883314972642297320, −3.79999982863044861206510251021, −2.18739352542178447241605447533, −0.20273843530244928662100320298,
1.86075337369580232387149766064, 3.08713838937416220554429698272, 4.66689127729654260508133015847, 5.35106689775218957710593806053, 6.47669790676419041417345501635, 7.10703960830592694198608994842, 8.442826411323690884123303046939, 8.929324393475988394139598338449, 10.07156865787320677812102446636, 10.85543486811655687481234088047