L(s) = 1 | + (0.866 − 0.5i)3-s + (−1.44 + 2.49i)5-s + (−2.63 + 0.194i)7-s + (0.499 − 0.866i)9-s + (−2.91 − 5.04i)11-s − 1.04·13-s + 2.88i·15-s + (−5.91 + 3.41i)17-s + (0.589 + 0.340i)19-s + (−2.18 + 1.48i)21-s + (−1.85 − 1.07i)23-s + (−1.65 − 2.86i)25-s − 0.999i·27-s − 6.61i·29-s + (−1.91 − 3.31i)31-s + ⋯ |
L(s) = 1 | + (0.499 − 0.288i)3-s + (−0.644 + 1.11i)5-s + (−0.997 + 0.0733i)7-s + (0.166 − 0.288i)9-s + (−0.878 − 1.52i)11-s − 0.290·13-s + 0.744i·15-s + (−1.43 + 0.827i)17-s + (0.135 + 0.0781i)19-s + (−0.477 + 0.324i)21-s + (−0.387 − 0.223i)23-s + (−0.331 − 0.573i)25-s − 0.192i·27-s − 1.22i·29-s + (−0.344 − 0.595i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 + 0.157i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.987 + 0.157i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00327724 - 0.0412997i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00327724 - 0.0412997i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (2.63 - 0.194i)T \) |
good | 5 | \( 1 + (1.44 - 2.49i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.91 + 5.04i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 1.04T + 13T^{2} \) |
| 17 | \( 1 + (5.91 - 3.41i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.589 - 0.340i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.85 + 1.07i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 6.61iT - 29T^{2} \) |
| 31 | \( 1 + (1.91 + 3.31i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.06 - 1.19i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.19iT - 41T^{2} \) |
| 43 | \( 1 + 1.34T + 43T^{2} \) |
| 47 | \( 1 + (5.52 - 9.57i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.99 - 4.03i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.81 - 3.93i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.63 - 2.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.65 - 11.5i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.08iT - 71T^{2} \) |
| 73 | \( 1 + (-4.88 + 2.82i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (10.9 + 6.32i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.482iT - 83T^{2} \) |
| 89 | \( 1 + (-10.7 - 6.19i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.63iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20879340503218255638977116771, −9.167934137636032077499619471961, −8.223926207183467450084410224173, −7.54845284623733524504599771713, −6.48691376296776806417575092252, −5.96590324896615982232358357925, −4.16968259281275193298634551850, −3.20259266223640103457538208886, −2.51460553361489296170596360422, −0.01898382238640947946945865193,
2.12360031665981547214818261111, 3.41198767821173440843944369919, 4.62062697212283743913791558937, 5.04619962769058684500404744065, 6.73552166926741448726429176292, 7.45968581324439468958551144664, 8.421308857890916284827859972937, 9.275722279926479278724316350339, 9.792095420798931997621970651021, 10.77669121227314707619701814398