Properties

Label 2-67-67.22-c1-0-0
Degree $2$
Conductor $67$
Sign $0.207 - 0.978i$
Analytic cond. $0.534997$
Root an. cond. $0.731435$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.459 + 0.134i)2-s + (0.260 + 1.81i)3-s + (−1.48 + 0.957i)4-s + (−0.345 + 0.755i)5-s + (−0.364 − 0.797i)6-s + (1.04 − 0.306i)7-s + (1.18 − 1.36i)8-s + (−0.337 + 0.0991i)9-s + (0.0566 − 0.393i)10-s + (1.19 − 2.61i)11-s + (−2.12 − 2.44i)12-s + (2.87 + 3.31i)13-s + (−0.438 + 0.281i)14-s + (−1.45 − 0.428i)15-s + (1.11 − 2.43i)16-s + (−2.76 − 1.77i)17-s + ⋯
L(s)  = 1  + (−0.324 + 0.0954i)2-s + (0.150 + 1.04i)3-s + (−0.744 + 0.478i)4-s + (−0.154 + 0.337i)5-s + (−0.148 − 0.325i)6-s + (0.394 − 0.115i)7-s + (0.418 − 0.482i)8-s + (−0.112 + 0.0330i)9-s + (0.0179 − 0.124i)10-s + (0.360 − 0.788i)11-s + (−0.612 − 0.707i)12-s + (0.797 + 0.920i)13-s + (−0.117 + 0.0752i)14-s + (−0.376 − 0.110i)15-s + (0.277 − 0.608i)16-s + (−0.670 − 0.430i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.207 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.207 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(67\)
Sign: $0.207 - 0.978i$
Analytic conductor: \(0.534997\)
Root analytic conductor: \(0.731435\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{67} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 67,\ (\ :1/2),\ 0.207 - 0.978i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.574315 + 0.465338i\)
\(L(\frac12)\) \(\approx\) \(0.574315 + 0.465338i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad67 \( 1 + (-7.85 - 2.31i)T \)
good2 \( 1 + (0.459 - 0.134i)T + (1.68 - 1.08i)T^{2} \)
3 \( 1 + (-0.260 - 1.81i)T + (-2.87 + 0.845i)T^{2} \)
5 \( 1 + (0.345 - 0.755i)T + (-3.27 - 3.77i)T^{2} \)
7 \( 1 + (-1.04 + 0.306i)T + (5.88 - 3.78i)T^{2} \)
11 \( 1 + (-1.19 + 2.61i)T + (-7.20 - 8.31i)T^{2} \)
13 \( 1 + (-2.87 - 3.31i)T + (-1.85 + 12.8i)T^{2} \)
17 \( 1 + (2.76 + 1.77i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (3.40 + 1.00i)T + (15.9 + 10.2i)T^{2} \)
23 \( 1 + (0.912 + 6.34i)T + (-22.0 + 6.47i)T^{2} \)
29 \( 1 + 1.97T + 29T^{2} \)
31 \( 1 + (1.76 - 2.03i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 - 8.07T + 37T^{2} \)
41 \( 1 + (2.28 + 1.46i)T + (17.0 + 37.2i)T^{2} \)
43 \( 1 + (6.51 + 4.18i)T + (17.8 + 39.1i)T^{2} \)
47 \( 1 + (1.56 + 10.8i)T + (-45.0 + 13.2i)T^{2} \)
53 \( 1 + (-6.30 + 4.05i)T + (22.0 - 48.2i)T^{2} \)
59 \( 1 + (6.97 - 8.05i)T + (-8.39 - 58.3i)T^{2} \)
61 \( 1 + (3.84 + 8.41i)T + (-39.9 + 46.1i)T^{2} \)
71 \( 1 + (1.45 - 0.937i)T + (29.4 - 64.5i)T^{2} \)
73 \( 1 + (0.608 + 1.33i)T + (-47.8 + 55.1i)T^{2} \)
79 \( 1 + (10.1 + 11.7i)T + (-11.2 + 78.1i)T^{2} \)
83 \( 1 + (3.35 - 7.35i)T + (-54.3 - 62.7i)T^{2} \)
89 \( 1 + (2.19 - 15.2i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 - 1.03T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.08111461086647854798739847285, −14.11202373298083776198266508538, −13.05502721727355658201412736588, −11.43230528105687467403753512954, −10.46943537512090280925577759619, −9.137888340156706162874634868212, −8.518869370581543061819966647311, −6.79551034006819437049989593213, −4.67050108988407103018865810316, −3.67925132915766215922594314522, 1.55511832201145678556558369493, 4.46556961928454067525794577897, 6.11502036072175332347710443003, 7.75003749597622371150081856035, 8.604166944713344541906020915802, 9.931415833351849496385381879860, 11.24284097956735401345101377385, 12.74891132419557578256651703801, 13.23700272881421170947026607500, 14.47602593784088764066540419767

Graph of the $Z$-function along the critical line