Properties

Label 2-669-223.19-c1-0-8
Degree $2$
Conductor $669$
Sign $0.819 - 0.573i$
Analytic cond. $5.34199$
Root an. cond. $2.31127$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.149 − 1.17i)2-s + (−0.759 + 0.649i)3-s + (0.586 − 0.152i)4-s + (−0.239 + 0.0340i)5-s + (0.875 + 0.792i)6-s + (−2.71 + 3.67i)7-s + (−1.14 − 2.85i)8-s + (0.155 − 0.987i)9-s + (0.0757 + 0.275i)10-s + (0.357 − 0.115i)11-s + (−0.346 + 0.497i)12-s + (1.52 − 0.539i)13-s + (4.71 + 2.63i)14-s + (0.159 − 0.181i)15-s + (−2.11 + 1.18i)16-s + (−0.331 + 1.53i)17-s + ⋯
L(s)  = 1  + (−0.106 − 0.828i)2-s + (−0.438 + 0.375i)3-s + (0.293 − 0.0763i)4-s + (−0.106 + 0.0152i)5-s + (0.357 + 0.323i)6-s + (−1.02 + 1.38i)7-s + (−0.405 − 1.00i)8-s + (0.0516 − 0.329i)9-s + (0.0239 + 0.0869i)10-s + (0.107 − 0.0346i)11-s + (−0.100 + 0.143i)12-s + (0.423 − 0.149i)13-s + (1.25 + 0.703i)14-s + (0.0412 − 0.0468i)15-s + (−0.528 + 0.295i)16-s + (−0.0803 + 0.372i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 - 0.573i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.819 - 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(669\)    =    \(3 \cdot 223\)
Sign: $0.819 - 0.573i$
Analytic conductor: \(5.34199\)
Root analytic conductor: \(2.31127\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{669} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 669,\ (\ :1/2),\ 0.819 - 0.573i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.01584 + 0.320370i\)
\(L(\frac12)\) \(\approx\) \(1.01584 + 0.320370i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.759 - 0.649i)T \)
223 \( 1 + (-14.9 - 0.870i)T \)
good2 \( 1 + (0.149 + 1.17i)T + (-1.93 + 0.503i)T^{2} \)
5 \( 1 + (0.239 - 0.0340i)T + (4.80 - 1.39i)T^{2} \)
7 \( 1 + (2.71 - 3.67i)T + (-2.04 - 6.69i)T^{2} \)
11 \( 1 + (-0.357 + 0.115i)T + (8.93 - 6.41i)T^{2} \)
13 \( 1 + (-1.52 + 0.539i)T + (10.1 - 8.16i)T^{2} \)
17 \( 1 + (0.331 - 1.53i)T + (-15.4 - 7.00i)T^{2} \)
19 \( 1 + (-5.51 - 5.91i)T + (-1.34 + 18.9i)T^{2} \)
23 \( 1 + (-1.89 - 2.41i)T + (-5.47 + 22.3i)T^{2} \)
29 \( 1 + (-7.65 - 4.56i)T + (13.7 + 25.5i)T^{2} \)
31 \( 1 + (0.574 - 5.78i)T + (-30.3 - 6.10i)T^{2} \)
37 \( 1 + (2.32 - 2.10i)T + (3.65 - 36.8i)T^{2} \)
41 \( 1 + (2.76 + 0.474i)T + (38.6 + 13.6i)T^{2} \)
43 \( 1 + (-1.20 - 4.90i)T + (-38.1 + 19.9i)T^{2} \)
47 \( 1 + (5.41 - 5.81i)T + (-3.32 - 46.8i)T^{2} \)
53 \( 1 + (-1.66 + 0.0945i)T + (52.6 - 5.98i)T^{2} \)
59 \( 1 + (-7.97 + 0.678i)T + (58.1 - 9.97i)T^{2} \)
61 \( 1 + (0.663 - 3.56i)T + (-56.9 - 21.9i)T^{2} \)
67 \( 1 + (-3.33 + 12.1i)T + (-57.5 - 34.3i)T^{2} \)
71 \( 1 + (-6.74 + 14.3i)T + (-45.3 - 54.6i)T^{2} \)
73 \( 1 + (1.94 + 0.944i)T + (45.0 + 57.4i)T^{2} \)
79 \( 1 + (-2.48 - 6.73i)T + (-60.0 + 51.3i)T^{2} \)
83 \( 1 + (1.10 - 4.49i)T + (-73.5 - 38.4i)T^{2} \)
89 \( 1 + (0.0419 + 0.00597i)T + (85.4 + 24.8i)T^{2} \)
97 \( 1 + (1.63 - 2.08i)T + (-23.1 - 94.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59970373837855472841023854701, −9.797456387218910772413932256601, −9.301569786506226302528170756774, −8.207545316404359057257611133569, −6.78191367523446466476999019416, −6.06492069082266492394852258188, −5.27719594027932237507415933662, −3.56288664025538434584921008306, −3.02354692396945638183494887355, −1.50346566147619027416281098987, 0.63894602709416142937628860875, 2.65190276476909266219921949605, 3.93798295808128965856115439699, 5.20185413311785047636163210037, 6.32413244464582139883005654578, 6.91052138735110655143939995872, 7.42696921272140384689075795133, 8.424969842896399203818932061975, 9.589309203011955289873530249720, 10.40393376789959779287733788924

Graph of the $Z$-function along the critical line