Properties

Label 2-6660-5.4-c1-0-62
Degree $2$
Conductor $6660$
Sign $0.586 + 0.809i$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.81 − 1.31i)5-s − 3.31i·7-s + 1.65·11-s + 5.05i·13-s + 7.05i·17-s − 1.24·19-s − 9.40i·23-s + (1.55 − 4.75i)25-s + 7.76·29-s + 2.25·31-s + (−4.34 − 5.99i)35-s i·37-s + 3.25·41-s − 4.56i·43-s + 5.09i·47-s + ⋯
L(s)  = 1  + (0.809 − 0.586i)5-s − 1.25i·7-s + 0.498·11-s + 1.40i·13-s + 1.71i·17-s − 0.286·19-s − 1.96i·23-s + (0.311 − 0.950i)25-s + 1.44·29-s + 0.405·31-s + (−0.734 − 1.01i)35-s − 0.164i·37-s + 0.507·41-s − 0.696i·43-s + 0.742i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.586 + 0.809i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.586 + 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $0.586 + 0.809i$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6660} (5329, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ 0.586 + 0.809i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.528423689\)
\(L(\frac12)\) \(\approx\) \(2.528423689\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-1.81 + 1.31i)T \)
37 \( 1 + iT \)
good7 \( 1 + 3.31iT - 7T^{2} \)
11 \( 1 - 1.65T + 11T^{2} \)
13 \( 1 - 5.05iT - 13T^{2} \)
17 \( 1 - 7.05iT - 17T^{2} \)
19 \( 1 + 1.24T + 19T^{2} \)
23 \( 1 + 9.40iT - 23T^{2} \)
29 \( 1 - 7.76T + 29T^{2} \)
31 \( 1 - 2.25T + 31T^{2} \)
41 \( 1 - 3.25T + 41T^{2} \)
43 \( 1 + 4.56iT - 43T^{2} \)
47 \( 1 - 5.09iT - 47T^{2} \)
53 \( 1 + 4.36iT - 53T^{2} \)
59 \( 1 + 6.98T + 59T^{2} \)
61 \( 1 + 2.68T + 61T^{2} \)
67 \( 1 + 0.459iT - 67T^{2} \)
71 \( 1 - 11.5T + 71T^{2} \)
73 \( 1 - 5.85iT - 73T^{2} \)
79 \( 1 + 5.88T + 79T^{2} \)
83 \( 1 - 2.42iT - 83T^{2} \)
89 \( 1 - 15.9T + 89T^{2} \)
97 \( 1 + 9.45iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.028197069247099271812632399207, −6.96679110496147188682122319037, −6.42322494623360474419517098880, −6.07021642727814842169250004714, −4.68480437768455567591808556337, −4.43110015936705926401529621990, −3.71324053892477461124705131929, −2.39439740413560931477895157280, −1.60321236183409343457501249910, −0.74342051517531623394842866916, 0.983832725618381907132663379254, 2.14258692677088417984075791568, 2.89313771432514645742120469809, 3.33682386902213973064792158520, 4.79093431671622238661349977206, 5.35445191705251198308093558676, 5.94646260511378252270515764632, 6.55676720727722684504777401420, 7.42516663776808522689410550870, 8.016304205016517371310421567493

Graph of the $Z$-function along the critical line