| L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s − 2.16·7-s + (0.707 − 0.707i)8-s − 3.65·11-s + (3.58 + 3.58i)13-s + (1.52 + 1.52i)14-s − 1.00·16-s + (5.17 − 5.17i)17-s + (4.58 + 4.58i)19-s + (2.58 + 2.58i)22-s + (−1.52 + 1.52i)23-s + 5i·25-s − 5.06i·26-s − 2.16i·28-s + (3.65 + 3.65i)29-s + ⋯ |
| L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s − 0.817·7-s + (0.250 − 0.250i)8-s − 1.10·11-s + (0.993 + 0.993i)13-s + (0.408 + 0.408i)14-s − 0.250·16-s + (1.25 − 1.25i)17-s + (1.05 + 1.05i)19-s + (0.550 + 0.550i)22-s + (−0.318 + 0.318i)23-s + i·25-s − 0.993i·26-s − 0.408i·28-s + (0.677 + 0.677i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.933962 + 0.220543i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.933962 + 0.220543i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-2.41 + 5.58i)T \) |
| good | 5 | \( 1 - 5iT^{2} \) |
| 7 | \( 1 + 2.16T + 7T^{2} \) |
| 11 | \( 1 + 3.65T + 11T^{2} \) |
| 13 | \( 1 + (-3.58 - 3.58i)T + 13iT^{2} \) |
| 17 | \( 1 + (-5.17 + 5.17i)T - 17iT^{2} \) |
| 19 | \( 1 + (-4.58 - 4.58i)T + 19iT^{2} \) |
| 23 | \( 1 + (1.52 - 1.52i)T - 23iT^{2} \) |
| 29 | \( 1 + (-3.65 - 3.65i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.16 - 4.16i)T - 31iT^{2} \) |
| 41 | \( 1 - 1.18T + 41T^{2} \) |
| 43 | \( 1 + (-7.16 - 7.16i)T + 43iT^{2} \) |
| 47 | \( 1 - 7.30iT - 47T^{2} \) |
| 53 | \( 1 - 14.0iT - 53T^{2} \) |
| 59 | \( 1 - 59iT^{2} \) |
| 61 | \( 1 + (-8.32 + 8.32i)T - 61iT^{2} \) |
| 67 | \( 1 + 8.32iT - 67T^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 + 2.67iT - 73T^{2} \) |
| 79 | \( 1 + (-11.4 - 11.4i)T + 79iT^{2} \) |
| 83 | \( 1 + 9.76iT - 83T^{2} \) |
| 89 | \( 1 + (0.936 + 0.936i)T + 89iT^{2} \) |
| 97 | \( 1 + (7.16 + 7.16i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58056746981089771439668343794, −9.527410196118007832307825136968, −9.268552489102958688466377704817, −7.894038033555811041112158474871, −7.35635198346205811037796600393, −6.11594665703030768459075514148, −5.13910414180964481110380474007, −3.64405380949980382551443213897, −2.90944228297862514351918876782, −1.27930907781113345460518625074,
0.69633307795331972571605770191, 2.65011755613759861859650421266, 3.79674846831425393873615543844, 5.36542099380426639544320421413, 5.94433479825075025479903964984, 6.96615012929977843246217218732, 8.045299381589839337006199674689, 8.431001553265448385312277340402, 9.789516448362855298192005248019, 10.18600260185061015500027104904