L(s) = 1 | + (0.309 − 0.951i)3-s + (0.809 − 0.587i)5-s + (−1.26 − 3.88i)7-s + (−0.809 − 0.587i)9-s + (−2.91 + 1.57i)11-s + (−5.72 − 4.15i)13-s + (−0.309 − 0.951i)15-s + (−0.657 + 0.477i)17-s + (−2.56 + 7.90i)19-s − 4.08·21-s + 7.02·23-s + (0.309 − 0.951i)25-s + (−0.809 + 0.587i)27-s + (−2.19 − 6.75i)29-s + (3.69 + 2.68i)31-s + ⋯ |
L(s) = 1 | + (0.178 − 0.549i)3-s + (0.361 − 0.262i)5-s + (−0.477 − 1.46i)7-s + (−0.269 − 0.195i)9-s + (−0.880 + 0.474i)11-s + (−1.58 − 1.15i)13-s + (−0.0797 − 0.245i)15-s + (−0.159 + 0.115i)17-s + (−0.588 + 1.81i)19-s − 0.891·21-s + 1.46·23-s + (0.0618 − 0.190i)25-s + (−0.155 + 0.113i)27-s + (−0.407 − 1.25i)29-s + (0.663 + 0.482i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.868 + 0.495i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.868 + 0.495i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.250867 - 0.947126i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.250867 - 0.947126i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (2.91 - 1.57i)T \) |
good | 7 | \( 1 + (1.26 + 3.88i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (5.72 + 4.15i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.657 - 0.477i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (2.56 - 7.90i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 7.02T + 23T^{2} \) |
| 29 | \( 1 + (2.19 + 6.75i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.69 - 2.68i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.971 + 2.98i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.96 + 6.05i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 1.35T + 43T^{2} \) |
| 47 | \( 1 + (-0.858 + 2.64i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (5.62 + 4.08i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.34 + 4.12i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.12 + 5.90i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 3.26T + 67T^{2} \) |
| 71 | \( 1 + (-7.22 + 5.24i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.649 - 1.99i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (10.1 + 7.38i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-11.3 + 8.21i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 0.800T + 89T^{2} \) |
| 97 | \( 1 + (3.90 + 2.83i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22673736509979233811020707939, −9.529892073097433812390974695850, −8.104482274567585114200653987785, −7.58188913030954815015254334676, −6.81001205244832711105034695849, −5.63933315593772925493218954916, −4.64428920457192212488393812472, −3.38185414976393642645305937306, −2.14525285064813378127067258252, −0.47612401528920793054719059676,
2.51178543525038440811087364420, 2.82617156390251462375813959524, 4.70724179557354990811234237279, 5.25922246049036101597313944470, 6.43571660276663246032637117516, 7.26597170540978299018466360594, 8.676964908195636836285332403558, 9.178773989087708831410257639518, 9.807611518445197611767921415646, 10.93944783372753094187295142853