L(s) = 1 | + 1.41i·2-s + (2.28 − 1.94i)3-s − 2.00·4-s + 5.56i·5-s + (2.75 + 3.22i)6-s + 9.94·7-s − 2.82i·8-s + (1.40 − 8.88i)9-s − 7.87·10-s + 3.31i·11-s + (−4.56 + 3.89i)12-s − 18.1·13-s + 14.0i·14-s + (10.8 + 12.6i)15-s + 4.00·16-s − 18.4i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.760 − 0.649i)3-s − 0.500·4-s + 1.11i·5-s + (0.459 + 0.537i)6-s + 1.42·7-s − 0.353i·8-s + (0.156 − 0.987i)9-s − 0.787·10-s + 0.301i·11-s + (−0.380 + 0.324i)12-s − 1.39·13-s + 1.00i·14-s + (0.722 + 0.846i)15-s + 0.250·16-s − 1.08i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.760 - 0.649i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.760 - 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.40472 + 0.518179i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40472 + 0.518179i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 3 | \( 1 + (-2.28 + 1.94i)T \) |
| 11 | \( 1 - 3.31iT \) |
good | 5 | \( 1 - 5.56iT - 25T^{2} \) |
| 7 | \( 1 - 9.94T + 49T^{2} \) |
| 13 | \( 1 + 18.1T + 169T^{2} \) |
| 17 | \( 1 + 18.4iT - 289T^{2} \) |
| 19 | \( 1 + 29.8T + 361T^{2} \) |
| 23 | \( 1 + 13.1iT - 529T^{2} \) |
| 29 | \( 1 - 15.8iT - 841T^{2} \) |
| 31 | \( 1 - 22.6T + 961T^{2} \) |
| 37 | \( 1 - 21.8T + 1.36e3T^{2} \) |
| 41 | \( 1 - 9.61iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 44.2T + 1.84e3T^{2} \) |
| 47 | \( 1 - 52.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 51.1iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 54.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 24.0T + 3.72e3T^{2} \) |
| 67 | \( 1 - 107.T + 4.48e3T^{2} \) |
| 71 | \( 1 - 46.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 6.88T + 5.32e3T^{2} \) |
| 79 | \( 1 + 63.7T + 6.24e3T^{2} \) |
| 83 | \( 1 - 57.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 108. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 87.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.55584939589453271412125712933, −14.22832197442532401120641282205, −12.73919869925378244592120137542, −11.45569069889441956704078948182, −10.00585875375875894167364790566, −8.519550802367891379618802273973, −7.50497437466398044786515643292, −6.68119788233287057589348902460, −4.67936666833230440649765139993, −2.47236037408845179453311840154,
2.01030323929040535059957533044, 4.24758823722394731448346540587, 5.08965766727178047427208545900, 8.050463990223636041418106458534, 8.640724289265122667742573638031, 9.908390201338065823182834369824, 11.02774427476990364359669872210, 12.27523717938173084545821361465, 13.33271135097267491806136974762, 14.52754332477918949460758077277