L(s) = 1 | − 1.41i·2-s + (1.06 − 2.80i)3-s − 2.00·4-s − 1.80i·5-s + (−3.96 − 1.49i)6-s + 0.994·7-s + 2.82i·8-s + (−6.75 − 5.95i)9-s − 2.55·10-s + 3.31i·11-s + (−2.12 + 5.61i)12-s + 13.6·13-s − 1.40i·14-s + (−5.07 − 1.91i)15-s + 4.00·16-s − 3.98i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.353 − 0.935i)3-s − 0.500·4-s − 0.361i·5-s + (−0.661 − 0.249i)6-s + 0.142·7-s + 0.353i·8-s + (−0.750 − 0.661i)9-s − 0.255·10-s + 0.301i·11-s + (−0.176 + 0.467i)12-s + 1.04·13-s − 0.100i·14-s + (−0.338 − 0.127i)15-s + 0.250·16-s − 0.234i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.353 + 0.935i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.353 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.727029 - 1.05193i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.727029 - 1.05193i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 1.41iT \) |
| 3 | \( 1 + (-1.06 + 2.80i)T \) |
| 11 | \( 1 - 3.31iT \) |
good | 5 | \( 1 + 1.80iT - 25T^{2} \) |
| 7 | \( 1 - 0.994T + 49T^{2} \) |
| 13 | \( 1 - 13.6T + 169T^{2} \) |
| 17 | \( 1 + 3.98iT - 289T^{2} \) |
| 19 | \( 1 - 21.5T + 361T^{2} \) |
| 23 | \( 1 - 41.1iT - 529T^{2} \) |
| 29 | \( 1 + 0.886iT - 841T^{2} \) |
| 31 | \( 1 + 33.6T + 961T^{2} \) |
| 37 | \( 1 - 7.23T + 1.36e3T^{2} \) |
| 41 | \( 1 + 24.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 76.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + 44.8iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 40.8iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 70.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 79.4T + 3.72e3T^{2} \) |
| 67 | \( 1 + 125.T + 4.48e3T^{2} \) |
| 71 | \( 1 - 13.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 32.1T + 5.32e3T^{2} \) |
| 79 | \( 1 - 86.1T + 6.24e3T^{2} \) |
| 83 | \( 1 - 140. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 17.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 86.1T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.81184544537626736154298638252, −13.20296300749529042676692860554, −12.06467492176527953475627230980, −11.20339031723857162159145710995, −9.545092484821062089610261006342, −8.507669488379055786980861784916, −7.23338132520444306636999000396, −5.47982332409081330242116717536, −3.40594659011723709174825145958, −1.44096846003937947884255205183,
3.39530798230392836774286559081, 4.94814364184257329693581444701, 6.39889412644787876320912245656, 8.065014741157322473862380100174, 9.015642136881742645550539342213, 10.30271036346195805326970967813, 11.31421686046770409722638296572, 13.10413399377142845619316038279, 14.26653039113327939807440031554, 14.87474297727590927380182262772