L(s) = 1 | − 5.64i·3-s + 13.8·5-s + 4.28i·7-s − 4.84·9-s − 34.5i·11-s + 34.3i·13-s − 78.1i·15-s + 5.45i·17-s − 49.0i·19-s + 24.1·21-s + 27.6·23-s + 66.6·25-s − 125. i·27-s − 187. i·29-s + 52.3·31-s + ⋯ |
L(s) = 1 | − 1.08i·3-s + 1.23·5-s + 0.231i·7-s − 0.179·9-s − 0.946i·11-s + 0.732i·13-s − 1.34i·15-s + 0.0777i·17-s − 0.592i·19-s + 0.251·21-s + 0.251·23-s + 0.533·25-s − 0.891i·27-s − 1.20i·29-s + 0.303·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.573407527\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.573407527\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 41 | \( 1 + (-41 + 259. i)T \) |
good | 3 | \( 1 + 5.64iT - 27T^{2} \) |
| 5 | \( 1 - 13.8T + 125T^{2} \) |
| 7 | \( 1 - 4.28iT - 343T^{2} \) |
| 11 | \( 1 + 34.5iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 34.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 5.45iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 49.0iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 27.6T + 1.21e4T^{2} \) |
| 29 | \( 1 + 187. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 52.3T + 2.97e4T^{2} \) |
| 37 | \( 1 - 258.T + 5.06e4T^{2} \) |
| 43 | \( 1 - 93.2T + 7.95e4T^{2} \) |
| 47 | \( 1 - 422. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 105. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 529.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 428.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 932. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 702. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 974.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 205. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 1.09e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.50e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 293. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.743810117882657319474319788458, −9.082350320563709179563485736772, −8.108414245644195169954579515000, −7.12988621959149804621129978529, −6.22549329212932806477665564753, −5.77315169116710652012417298207, −4.38041736513890834083987301595, −2.72977587064162604336120877423, −1.88410596469716697136893465126, −0.76683278785903561705210376217,
1.37570493160413956768436388296, 2.68079119949212684960867118166, 3.93454730030472708522167773858, 4.92217988989510771409041544368, 5.64430217695878146672041881159, 6.72847497936210141159231628638, 7.77697709132176350414808787312, 9.034305704110278681190255271389, 9.661118375327652308023526562548, 10.28376480073195890941466759660