Properties

Label 2-6552-1.1-c1-0-33
Degree $2$
Conductor $6552$
Sign $1$
Analytic cond. $52.3179$
Root an. cond. $7.23311$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.04·5-s + 7-s − 3.26·11-s + 13-s + 7.95·17-s + 3.04·19-s + 6.31·23-s − 3.90·25-s + 4.46·29-s + 3.19·31-s + 1.04·35-s − 1.26·37-s − 10.7·41-s + 6.90·43-s − 3.19·47-s + 49-s − 8.46·53-s − 3.41·55-s + 8.62·59-s − 9.31·61-s + 1.04·65-s − 0.146·67-s + 16.4·71-s − 1.63·73-s − 3.26·77-s − 14.7·79-s − 1.58·83-s + ⋯
L(s)  = 1  + 0.467·5-s + 0.377·7-s − 0.985·11-s + 0.277·13-s + 1.92·17-s + 0.698·19-s + 1.31·23-s − 0.781·25-s + 0.828·29-s + 0.573·31-s + 0.176·35-s − 0.208·37-s − 1.68·41-s + 1.05·43-s − 0.465·47-s + 0.142·49-s − 1.16·53-s − 0.460·55-s + 1.12·59-s − 1.19·61-s + 0.129·65-s − 0.0179·67-s + 1.95·71-s − 0.191·73-s − 0.372·77-s − 1.66·79-s − 0.173·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6552\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(52.3179\)
Root analytic conductor: \(7.23311\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.506270551\)
\(L(\frac12)\) \(\approx\) \(2.506270551\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 1.04T + 5T^{2} \)
11 \( 1 + 3.26T + 11T^{2} \)
17 \( 1 - 7.95T + 17T^{2} \)
19 \( 1 - 3.04T + 19T^{2} \)
23 \( 1 - 6.31T + 23T^{2} \)
29 \( 1 - 4.46T + 29T^{2} \)
31 \( 1 - 3.19T + 31T^{2} \)
37 \( 1 + 1.26T + 37T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 - 6.90T + 43T^{2} \)
47 \( 1 + 3.19T + 47T^{2} \)
53 \( 1 + 8.46T + 53T^{2} \)
59 \( 1 - 8.62T + 59T^{2} \)
61 \( 1 + 9.31T + 61T^{2} \)
67 \( 1 + 0.146T + 67T^{2} \)
71 \( 1 - 16.4T + 71T^{2} \)
73 \( 1 + 1.63T + 73T^{2} \)
79 \( 1 + 14.7T + 79T^{2} \)
83 \( 1 + 1.58T + 83T^{2} \)
89 \( 1 + 2.66T + 89T^{2} \)
97 \( 1 + 1.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.990288539915073606735240212843, −7.41898982503244765187074639358, −6.61104473782239021376095029053, −5.66051773139312022236227176632, −5.31256781033826296966953699174, −4.56843735438606604467318465215, −3.36389886891402316830682116940, −2.89419216713637773271397663655, −1.74097654536974917123883100715, −0.859246263859177735863788214517, 0.859246263859177735863788214517, 1.74097654536974917123883100715, 2.89419216713637773271397663655, 3.36389886891402316830682116940, 4.56843735438606604467318465215, 5.31256781033826296966953699174, 5.66051773139312022236227176632, 6.61104473782239021376095029053, 7.41898982503244765187074639358, 7.990288539915073606735240212843

Graph of the $Z$-function along the critical line