Properties

Label 2-650-5.4-c3-0-4
Degree $2$
Conductor $650$
Sign $-0.447 - 0.894i$
Analytic cond. $38.3512$
Root an. cond. $6.19283$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·2-s + 4i·3-s − 4·4-s + 8·6-s − 20i·7-s + 8i·8-s + 11·9-s − 48·11-s − 16i·12-s + 13i·13-s − 40·14-s + 16·16-s − 66i·17-s − 22i·18-s + 16·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.769i·3-s − 0.5·4-s + 0.544·6-s − 1.07i·7-s + 0.353i·8-s + 0.407·9-s − 1.31·11-s − 0.384i·12-s + 0.277i·13-s − 0.763·14-s + 0.250·16-s − 0.941i·17-s − 0.288i·18-s + 0.193·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(38.3512\)
Root analytic conductor: \(6.19283\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{650} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :3/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4668331504\)
\(L(\frac12)\) \(\approx\) \(0.4668331504\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2iT \)
5 \( 1 \)
13 \( 1 - 13iT \)
good3 \( 1 - 4iT - 27T^{2} \)
7 \( 1 + 20iT - 343T^{2} \)
11 \( 1 + 48T + 1.33e3T^{2} \)
17 \( 1 + 66iT - 4.91e3T^{2} \)
19 \( 1 - 16T + 6.85e3T^{2} \)
23 \( 1 - 168iT - 1.21e4T^{2} \)
29 \( 1 + 6T + 2.43e4T^{2} \)
31 \( 1 - 20T + 2.97e4T^{2} \)
37 \( 1 + 254iT - 5.06e4T^{2} \)
41 \( 1 + 390T + 6.89e4T^{2} \)
43 \( 1 + 124iT - 7.95e4T^{2} \)
47 \( 1 - 468iT - 1.03e5T^{2} \)
53 \( 1 - 558iT - 1.48e5T^{2} \)
59 \( 1 - 96T + 2.05e5T^{2} \)
61 \( 1 + 826T + 2.26e5T^{2} \)
67 \( 1 - 160iT - 3.00e5T^{2} \)
71 \( 1 + 420T + 3.57e5T^{2} \)
73 \( 1 - 362iT - 3.89e5T^{2} \)
79 \( 1 + 776T + 4.93e5T^{2} \)
83 \( 1 - 5.71e5T^{2} \)
89 \( 1 + 1.62e3T + 7.04e5T^{2} \)
97 \( 1 - 1.29e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46981037929358357764137321690, −9.772692227242943324163735988247, −9.091506929495486497099672626362, −7.72090633077006496068516612724, −7.19125039169025056540323711370, −5.53005945169771950057108686758, −4.69751010487668519691658652356, −3.86565708537775184062745872874, −2.86822852716602652965152290696, −1.33115516173750691639272353277, 0.13540187208211934873868379300, 1.80940977441005241260303504138, 2.96686608896966313020907627971, 4.57427278200835451675999541981, 5.50515954543929013853656561031, 6.34481307306828691396807476329, 7.16540188291916821623755872524, 8.288382831270347938451895239214, 8.442260192682996979237281199618, 9.884538827655131612942170749078

Graph of the $Z$-function along the critical line