| L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.316 + 1.18i)3-s + (0.499 + 0.866i)4-s + (0.316 − 1.18i)6-s + (0.401 + 0.695i)7-s − 0.999i·8-s + (1.30 − 0.752i)9-s + (−0.707 − 2.64i)11-s + (−0.864 + 0.864i)12-s + (1.91 − 3.05i)13-s − 0.803i·14-s + (−0.5 + 0.866i)16-s + (3.64 + 0.975i)17-s − 1.50·18-s + (−2.03 − 0.544i)19-s + ⋯ |
| L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.182 + 0.682i)3-s + (0.249 + 0.433i)4-s + (0.129 − 0.482i)6-s + (0.151 + 0.262i)7-s − 0.353i·8-s + (0.434 − 0.250i)9-s + (−0.213 − 0.796i)11-s + (−0.249 + 0.249i)12-s + (0.532 − 0.846i)13-s − 0.214i·14-s + (−0.125 + 0.216i)16-s + (0.883 + 0.236i)17-s − 0.354·18-s + (−0.466 − 0.124i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0421i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0421i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.30015 - 0.0273899i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.30015 - 0.0273899i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-1.91 + 3.05i)T \) |
| good | 3 | \( 1 + (-0.316 - 1.18i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.401 - 0.695i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.707 + 2.64i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-3.64 - 0.975i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (2.03 + 0.544i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-4.71 + 1.26i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (2.08 + 1.20i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.16 - 4.16i)T + 31iT^{2} \) |
| 37 | \( 1 + (3.07 - 5.33i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.97 + 1.33i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (1.78 - 6.64i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 4.44T + 47T^{2} \) |
| 53 | \( 1 + (-9.13 + 9.13i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.20 - 8.21i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-7.35 - 12.7i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.44 + 4.30i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.83 + 14.3i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 1.70iT - 73T^{2} \) |
| 79 | \( 1 - 1.85iT - 79T^{2} \) |
| 83 | \( 1 - 1.38T + 83T^{2} \) |
| 89 | \( 1 + (1.87 - 0.501i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (2.41 - 1.39i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41705387661569593747750428388, −9.837142024543322827695859028154, −8.746107689062435729992313397520, −8.333279005202978628923740397635, −7.17690925557680327039408617122, −6.04543813584767318181629150246, −4.95296368017450705732797085736, −3.68495145000788140722198837394, −2.89029780751251790613212159136, −1.10119929498304661085412075809,
1.23398440460636313529542128422, 2.32827442909622300279710981800, 4.05331616780267970680813162184, 5.19610698333744993962916909977, 6.42151748950163129695878135287, 7.22951726479180551499710275862, 7.73916613225121862102382561077, 8.740268607475063063475155020259, 9.620188251619181122592927544605, 10.42657516636781243245615636943