| L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.814 − 3.04i)3-s + (0.499 + 0.866i)4-s + (0.814 − 3.04i)6-s + (−0.402 − 0.696i)7-s + 0.999i·8-s + (−5.98 + 3.45i)9-s + (−0.778 − 2.90i)11-s + (2.22 − 2.22i)12-s + (−0.206 − 3.59i)13-s − 0.804i·14-s + (−0.5 + 0.866i)16-s + (−6.99 − 1.87i)17-s − 6.91·18-s + (4.51 + 1.21i)19-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.470 − 1.75i)3-s + (0.249 + 0.433i)4-s + (0.332 − 1.24i)6-s + (−0.152 − 0.263i)7-s + 0.353i·8-s + (−1.99 + 1.15i)9-s + (−0.234 − 0.876i)11-s + (0.642 − 0.642i)12-s + (−0.0571 − 0.998i)13-s − 0.215i·14-s + (−0.125 + 0.216i)16-s + (−1.69 − 0.454i)17-s − 1.62·18-s + (1.03 + 0.277i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.838 + 0.545i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.838 + 0.545i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.345517 - 1.16510i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.345517 - 1.16510i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.206 + 3.59i)T \) |
| good | 3 | \( 1 + (0.814 + 3.04i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (0.402 + 0.696i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.778 + 2.90i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (6.99 + 1.87i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-4.51 - 1.21i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.422 - 0.113i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (3.58 + 2.06i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.536 + 0.536i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.482 + 0.835i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.63 + 0.437i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (1.64 - 6.14i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 1.72T + 47T^{2} \) |
| 53 | \( 1 + (-5.01 + 5.01i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.0422 - 0.157i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.11 - 1.93i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.82 + 2.20i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.63 + 9.83i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 7.75iT - 79T^{2} \) |
| 83 | \( 1 - 15.6T + 83T^{2} \) |
| 89 | \( 1 + (-5.91 + 1.58i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-11.6 + 6.70i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58157663392177044855428321182, −8.998853714987624038073981178599, −7.982320701919979270819050646007, −7.45946042383996819405579923029, −6.54818543143324435628073737378, −5.88384174909396429511173744695, −5.02370521219296687734691477710, −3.32434496101751503097473184366, −2.20172376459937601146581244803, −0.53962313856119950807947647041,
2.33081727698066044745539208893, 3.66756514344620236651592901407, 4.45144524806738650561352047889, 5.08909452860551641586869615442, 6.08044937328381527938327801793, 7.10447867783756659875793753184, 8.844883170743030162909187271150, 9.369447505663176493549214433048, 10.15126920760642983905437499793, 10.94389383006248917727731074690