L(s) = 1 | − 2-s + 2.88i·3-s + 4-s − 2.88i·6-s − 1.88·7-s − 8-s − 5.30·9-s − 6.18i·11-s + 2.88i·12-s + (−0.287 − 3.59i)13-s + 1.88·14-s + 16-s − 3i·17-s + 5.30·18-s − 4.88i·19-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.66i·3-s + 0.5·4-s − 1.17i·6-s − 0.711·7-s − 0.353·8-s − 1.76·9-s − 1.86i·11-s + 0.831i·12-s + (−0.0798 − 0.996i)13-s + 0.502·14-s + 0.250·16-s − 0.727i·17-s + 1.25·18-s − 1.12i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.517 + 0.855i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.517 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.416433 - 0.234905i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.416433 - 0.234905i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.287 + 3.59i)T \) |
good | 3 | \( 1 - 2.88iT - 3T^{2} \) |
| 7 | \( 1 + 1.88T + 7T^{2} \) |
| 11 | \( 1 + 6.18iT - 11T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 + 4.88iT - 19T^{2} \) |
| 23 | \( 1 - 0.575iT - 23T^{2} \) |
| 29 | \( 1 + 5.07T + 29T^{2} \) |
| 31 | \( 1 - 7.30iT - 31T^{2} \) |
| 37 | \( 1 + 9.18T + 37T^{2} \) |
| 41 | \( 1 - 5.45iT - 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 - 2.45T + 47T^{2} \) |
| 53 | \( 1 + 11.0iT - 53T^{2} \) |
| 59 | \( 1 + 8.83iT - 59T^{2} \) |
| 61 | \( 1 - 3.64T + 61T^{2} \) |
| 67 | \( 1 - 3.57T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 11.8T + 73T^{2} \) |
| 79 | \( 1 - 11.1T + 79T^{2} \) |
| 83 | \( 1 + 0.188T + 83T^{2} \) |
| 89 | \( 1 + 11.4iT - 89T^{2} \) |
| 97 | \( 1 + 15.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30593573271239788476789546679, −9.572721207825303424023736093307, −8.879369162841929075395870714644, −8.235770529807241089064460726880, −6.83764047620476510870122705456, −5.72623990610386072389577898691, −4.99531556037090644981296759119, −3.39223453000705999914004291554, −3.08032689307719554541300912809, −0.31263851689319016462841469547,
1.63365515882574958306698841059, 2.26110084197248033358103984985, 3.97203127952143496534761714050, 5.72264007083583105772969278013, 6.62061578213497195449741880913, 7.21699954051959938848111538106, 7.81946245098516292869443958876, 8.907989244956390301468751220473, 9.708402626508777554600127549833, 10.58982464450652573968852044936