L(s) = 1 | − 2-s − 0.223i·3-s + 4-s + 0.223i·6-s + 0.776·7-s − 8-s + 2.95·9-s − 4.72i·11-s − 0.223i·12-s + (−3.08 − 1.86i)13-s − 0.776·14-s + 16-s + 3i·17-s − 2.95·18-s + 2.22i·19-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.129i·3-s + 0.5·4-s + 0.0912i·6-s + 0.293·7-s − 0.353·8-s + 0.983·9-s − 1.42i·11-s − 0.0645i·12-s + (−0.856 − 0.516i)13-s − 0.207·14-s + 0.250·16-s + 0.727i·17-s − 0.695·18-s + 0.510i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.534 + 0.845i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.534 + 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.963842 - 0.530775i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.963842 - 0.530775i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.08 + 1.86i)T \) |
good | 3 | \( 1 + 0.223iT - 3T^{2} \) |
| 7 | \( 1 - 0.776T + 7T^{2} \) |
| 11 | \( 1 + 4.72iT - 11T^{2} \) |
| 17 | \( 1 - 3iT - 17T^{2} \) |
| 19 | \( 1 - 2.22iT - 19T^{2} \) |
| 23 | \( 1 + 6.17iT - 23T^{2} \) |
| 29 | \( 1 - 8.50T + 29T^{2} \) |
| 31 | \( 1 - 0.950iT - 31T^{2} \) |
| 37 | \( 1 - 1.72T + 37T^{2} \) |
| 41 | \( 1 + 8.39iT - 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 - 5.39T + 47T^{2} \) |
| 53 | \( 1 + 2.50iT - 53T^{2} \) |
| 59 | \( 1 + 10.0iT - 59T^{2} \) |
| 61 | \( 1 + 4.32T + 61T^{2} \) |
| 67 | \( 1 - 9.17T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 7.05T + 73T^{2} \) |
| 79 | \( 1 - 0.273T + 79T^{2} \) |
| 83 | \( 1 - 10.7T + 83T^{2} \) |
| 89 | \( 1 - 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 10.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46663138136892812346779240201, −9.620007789839580705592781569727, −8.457083934335540728024336985073, −8.058212922089586176857287725300, −6.94231218992279150631768235507, −6.13296089768353663392130889476, −4.95570111858144732888042583715, −3.65376381824739563757526369469, −2.31967106478693151756859048068, −0.825140922864451005014035256564,
1.45837077689139638924052817250, 2.65434586748638500911510422881, 4.34815489856845310033680268657, 5.01335444476402002018519592753, 6.61237827305999091336220793051, 7.27289639607529747875852566927, 7.923279252987914024578116923948, 9.334261752372451969558527514806, 9.656377497734655989518903836793, 10.42949287410711621094667224899