L(s) = 1 | − 5.37i·2-s − 0.936·3-s − 20.9·4-s − 5i·5-s + 5.03i·6-s + 0.201i·7-s + 69.4i·8-s − 26.1·9-s − 26.8·10-s − 10.4i·11-s + 19.5·12-s + (39.9 − 24.5i)13-s + 1.08·14-s + 4.68i·15-s + 205.·16-s − 54.7·17-s + ⋯ |
L(s) = 1 | − 1.90i·2-s − 0.180·3-s − 2.61·4-s − 0.447i·5-s + 0.342i·6-s + 0.0108i·7-s + 3.06i·8-s − 0.967·9-s − 0.850·10-s − 0.285i·11-s + 0.471·12-s + (0.851 − 0.523i)13-s + 0.0207·14-s + 0.0806i·15-s + 3.21·16-s − 0.781·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.523 - 0.851i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.523 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.356289 + 0.637259i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.356289 + 0.637259i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + 5iT \) |
| 13 | \( 1 + (-39.9 + 24.5i)T \) |
good | 2 | \( 1 + 5.37iT - 8T^{2} \) |
| 3 | \( 1 + 0.936T + 27T^{2} \) |
| 7 | \( 1 - 0.201iT - 343T^{2} \) |
| 11 | \( 1 + 10.4iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 54.7T + 4.91e3T^{2} \) |
| 19 | \( 1 + 129. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 175.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 107.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 22.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 205. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 285. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 321.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 379. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 506.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 678. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 186.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 925. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 376. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 671. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 593.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 425. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 141. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 551. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.36980568509648561006856766128, −12.30582791195698887437283114136, −11.33406895722717352785563390722, −10.62531840355555640940593384205, −9.175511252775737301623630965319, −8.423345686165744525935033397332, −5.62757424998476649755666551630, −4.13292776760020699012960293290, −2.55283591036004910893597615615, −0.51478483662979872027753307819,
4.09185949015735316092587898009, 5.76510929292569719042177829559, 6.51737936964893710187640046852, 7.923087802425750358021986109425, 8.821413583868947991386131439860, 10.23778978846328918490210062424, 11.97814965250908178862450775100, 13.60247513602621217842015241275, 14.22041961483155361301480877218, 15.17576686886318654865333826371