Properties

Label 6-6480e3-1.1-c1e3-0-3
Degree $6$
Conductor $272097792000$
Sign $1$
Analytic cond. $138533.$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 5·7-s + 2·11-s + 2·17-s + 4·19-s + 7·23-s + 6·25-s − 7·29-s + 16·31-s + 15·35-s + 2·37-s − 41-s − 2·43-s + 13·47-s + 7·49-s − 10·53-s + 6·55-s + 6·59-s − 11·61-s − 67-s + 14·71-s + 16·73-s + 10·77-s + 6·79-s + 21·83-s + 6·85-s − 33·89-s + ⋯
L(s)  = 1  + 1.34·5-s + 1.88·7-s + 0.603·11-s + 0.485·17-s + 0.917·19-s + 1.45·23-s + 6/5·25-s − 1.29·29-s + 2.87·31-s + 2.53·35-s + 0.328·37-s − 0.156·41-s − 0.304·43-s + 1.89·47-s + 49-s − 1.37·53-s + 0.809·55-s + 0.781·59-s − 1.40·61-s − 0.122·67-s + 1.66·71-s + 1.87·73-s + 1.13·77-s + 0.675·79-s + 2.30·83-s + 0.650·85-s − 3.49·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12} \cdot 5^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12} \cdot 5^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 3^{12} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(138533.\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{12} \cdot 3^{12} \cdot 5^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(15.81745378\)
\(L(\frac12)\) \(\approx\) \(15.81745378\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{3} \)
good7$S_4\times C_2$ \( 1 - 5 T + 18 T^{2} - 61 T^{3} + 18 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \) 3.7.af_s_acj
11$S_4\times C_2$ \( 1 - 2 T + 25 T^{2} - 32 T^{3} + 25 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) 3.11.ac_z_abg
13$S_4\times C_2$ \( 1 + 15 T^{2} + 36 T^{3} + 15 p T^{4} + p^{3} T^{6} \) 3.13.a_p_bk
17$S_4\times C_2$ \( 1 - 2 T + 15 T^{2} + 40 T^{3} + 15 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) 3.17.ac_p_bo
19$S_4\times C_2$ \( 1 - 4 T + 53 T^{2} - 148 T^{3} + 53 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \) 3.19.ae_cb_afs
23$S_4\times C_2$ \( 1 - 7 T + 18 T^{2} - 19 T^{3} + 18 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \) 3.23.ah_s_at
29$S_4\times C_2$ \( 1 + 7 T + 82 T^{2} + 379 T^{3} + 82 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \) 3.29.h_de_op
31$S_4\times C_2$ \( 1 - 16 T + 169 T^{2} - 1100 T^{3} + 169 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \) 3.31.aq_gn_abqi
37$S_4\times C_2$ \( 1 - 2 T + 103 T^{2} - 136 T^{3} + 103 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) 3.37.ac_dz_afg
41$S_4\times C_2$ \( 1 + T + 114 T^{2} + 85 T^{3} + 114 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \) 3.41.b_ek_dh
43$S_4\times C_2$ \( 1 + 2 T + 93 T^{2} + 64 T^{3} + 93 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.43.c_dp_cm
47$S_4\times C_2$ \( 1 - 13 T + 56 T^{2} - 99 T^{3} + 56 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \) 3.47.an_ce_adv
53$S_4\times C_2$ \( 1 + 10 T + 171 T^{2} + 1036 T^{3} + 171 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \) 3.53.k_gp_bnw
59$S_4\times C_2$ \( 1 - 6 T + 117 T^{2} - 780 T^{3} + 117 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.59.ag_en_abea
61$S_4\times C_2$ \( 1 + 11 T + 142 T^{2} + 823 T^{3} + 142 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \) 3.61.l_fm_bfr
67$S_4\times C_2$ \( 1 + T + 68 T^{2} + 247 T^{3} + 68 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \) 3.67.b_cq_jn
71$S_4\times C_2$ \( 1 - 14 T + 193 T^{2} - 1952 T^{3} + 193 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \) 3.71.ao_hl_acxc
73$S_4\times C_2$ \( 1 - 16 T + 3 p T^{2} - 1952 T^{3} + 3 p^{2} T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \) 3.73.aq_il_acxc
79$S_4\times C_2$ \( 1 - 6 T + 153 T^{2} - 1052 T^{3} + 153 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.79.ag_fx_abom
83$S_4\times C_2$ \( 1 - 21 T + 378 T^{2} - 3729 T^{3} + 378 p T^{4} - 21 p^{2} T^{5} + p^{3} T^{6} \) 3.83.av_oo_afnl
89$C_2$ \( ( 1 + 11 T + p T^{2} )^{3} \) 3.89.bh_yg_krd
97$S_4\times C_2$ \( 1 - 30 T + 447 T^{2} - 4724 T^{3} + 447 p T^{4} - 30 p^{2} T^{5} + p^{3} T^{6} \) 3.97.abe_rf_agzs
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.26688442767580174298093648879, −6.66304164824867870511030635526, −6.62863916383555750764127922650, −6.37232033147249678088035253151, −6.17002753300069522167189671801, −5.87153827298815125076737466634, −5.66825751247638829937286973505, −5.16355035873671785504375497858, −5.14276142162837300309740621625, −5.12583897504809257764574604882, −4.69876454046187624165510210481, −4.55974308653066974228749603232, −4.25403695509309653207437152844, −3.87347737813239494746349380792, −3.54956488901264806253917341557, −3.38913500103024881152654747512, −2.87252023059663371208334437680, −2.71814308362277607916711297546, −2.52357339468073445710010036750, −1.91495136559814539427415706956, −1.84573268714590542162019713095, −1.61231915838136089027346665338, −1.09130790352822194774105716877, −0.821847915870118145921926751260, −0.72408876703583060903983536965, 0.72408876703583060903983536965, 0.821847915870118145921926751260, 1.09130790352822194774105716877, 1.61231915838136089027346665338, 1.84573268714590542162019713095, 1.91495136559814539427415706956, 2.52357339468073445710010036750, 2.71814308362277607916711297546, 2.87252023059663371208334437680, 3.38913500103024881152654747512, 3.54956488901264806253917341557, 3.87347737813239494746349380792, 4.25403695509309653207437152844, 4.55974308653066974228749603232, 4.69876454046187624165510210481, 5.12583897504809257764574604882, 5.14276142162837300309740621625, 5.16355035873671785504375497858, 5.66825751247638829937286973505, 5.87153827298815125076737466634, 6.17002753300069522167189671801, 6.37232033147249678088035253151, 6.62863916383555750764127922650, 6.66304164824867870511030635526, 7.26688442767580174298093648879

Graph of the $Z$-function along the critical line