L(s) = 1 | + (0.720 − 0.720i)3-s + (−0.707 − 0.707i)5-s + 4.02i·7-s + 1.96i·9-s + (0.646 + 0.646i)11-s + (−4.91 + 4.91i)13-s − 1.01·15-s − 2.70·17-s + (0.438 − 0.438i)19-s + (2.90 + 2.90i)21-s − 3.60i·23-s + 1.00i·25-s + (3.57 + 3.57i)27-s + (−2.00 + 2.00i)29-s + 4.30·31-s + ⋯ |
L(s) = 1 | + (0.416 − 0.416i)3-s + (−0.316 − 0.316i)5-s + 1.52i·7-s + 0.653i·9-s + (0.195 + 0.195i)11-s + (−1.36 + 1.36i)13-s − 0.263·15-s − 0.656·17-s + (0.100 − 0.100i)19-s + (0.633 + 0.633i)21-s − 0.750i·23-s + 0.200i·25-s + (0.688 + 0.688i)27-s + (−0.373 + 0.373i)29-s + 0.774·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.163 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.163 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.965074 + 0.818598i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.965074 + 0.818598i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-0.720 + 0.720i)T - 3iT^{2} \) |
| 7 | \( 1 - 4.02iT - 7T^{2} \) |
| 11 | \( 1 + (-0.646 - 0.646i)T + 11iT^{2} \) |
| 13 | \( 1 + (4.91 - 4.91i)T - 13iT^{2} \) |
| 17 | \( 1 + 2.70T + 17T^{2} \) |
| 19 | \( 1 + (-0.438 + 0.438i)T - 19iT^{2} \) |
| 23 | \( 1 + 3.60iT - 23T^{2} \) |
| 29 | \( 1 + (2.00 - 2.00i)T - 29iT^{2} \) |
| 31 | \( 1 - 4.30T + 31T^{2} \) |
| 37 | \( 1 + (-0.743 - 0.743i)T + 37iT^{2} \) |
| 41 | \( 1 - 0.603iT - 41T^{2} \) |
| 43 | \( 1 + (-5.03 - 5.03i)T + 43iT^{2} \) |
| 47 | \( 1 - 10.8T + 47T^{2} \) |
| 53 | \( 1 + (4.07 + 4.07i)T + 53iT^{2} \) |
| 59 | \( 1 + (1.22 + 1.22i)T + 59iT^{2} \) |
| 61 | \( 1 + (-6.98 + 6.98i)T - 61iT^{2} \) |
| 67 | \( 1 + (5.24 - 5.24i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.7iT - 71T^{2} \) |
| 73 | \( 1 - 1.30iT - 73T^{2} \) |
| 79 | \( 1 - 0.611T + 79T^{2} \) |
| 83 | \( 1 + (1.29 - 1.29i)T - 83iT^{2} \) |
| 89 | \( 1 - 10.9iT - 89T^{2} \) |
| 97 | \( 1 + 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90154172675631647239889023120, −9.571666294530134483966528027480, −9.005597590502028678954981105636, −8.247954061771273039319427391468, −7.30392112278013418804713150423, −6.40840734337038430272632999791, −5.14636118904516430302900811541, −4.43306628602676412902943478842, −2.65163688374248633813614099861, −2.00323305257107954349437330457,
0.64000854838136507133344940303, 2.77840514930882530567667365528, 3.76115384138428170783012521035, 4.51432414719872237127298040540, 5.86641372493034028575515154285, 7.15048453363496393248619540237, 7.54445009136563694615461447529, 8.652371152139359367382411821835, 9.755444480216955132442835786280, 10.23832399634468134983030122507