L(s) = 1 | + (0.120 − 0.120i)3-s + (0.707 + 0.707i)5-s − 2.66i·7-s + 2.97i·9-s + (3.49 + 3.49i)11-s + (−2.94 + 2.94i)13-s + 0.169·15-s + 1.85·17-s + (3.44 − 3.44i)19-s + (−0.320 − 0.320i)21-s + 0.707i·23-s + 1.00i·25-s + (0.716 + 0.716i)27-s + (3.49 − 3.49i)29-s + 6.84·31-s + ⋯ |
L(s) = 1 | + (0.0692 − 0.0692i)3-s + (0.316 + 0.316i)5-s − 1.00i·7-s + 0.990i·9-s + (1.05 + 1.05i)11-s + (−0.815 + 0.815i)13-s + 0.0438·15-s + 0.448·17-s + (0.791 − 0.791i)19-s + (−0.0698 − 0.0698i)21-s + 0.147i·23-s + 0.200i·25-s + (0.137 + 0.137i)27-s + (0.649 − 0.649i)29-s + 1.22·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.878 - 0.477i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.878 - 0.477i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61534 + 0.410880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61534 + 0.410880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-0.120 + 0.120i)T - 3iT^{2} \) |
| 7 | \( 1 + 2.66iT - 7T^{2} \) |
| 11 | \( 1 + (-3.49 - 3.49i)T + 11iT^{2} \) |
| 13 | \( 1 + (2.94 - 2.94i)T - 13iT^{2} \) |
| 17 | \( 1 - 1.85T + 17T^{2} \) |
| 19 | \( 1 + (-3.44 + 3.44i)T - 19iT^{2} \) |
| 23 | \( 1 - 0.707iT - 23T^{2} \) |
| 29 | \( 1 + (-3.49 + 3.49i)T - 29iT^{2} \) |
| 31 | \( 1 - 6.84T + 31T^{2} \) |
| 37 | \( 1 + (-0.0975 - 0.0975i)T + 37iT^{2} \) |
| 41 | \( 1 - 10.2iT - 41T^{2} \) |
| 43 | \( 1 + (4.43 + 4.43i)T + 43iT^{2} \) |
| 47 | \( 1 + 1.89T + 47T^{2} \) |
| 53 | \( 1 + (-7.43 - 7.43i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.959 + 0.959i)T + 59iT^{2} \) |
| 61 | \( 1 + (6.49 - 6.49i)T - 61iT^{2} \) |
| 67 | \( 1 + (3.49 - 3.49i)T - 67iT^{2} \) |
| 71 | \( 1 + 7.86iT - 71T^{2} \) |
| 73 | \( 1 + 15.6iT - 73T^{2} \) |
| 79 | \( 1 + 6.70T + 79T^{2} \) |
| 83 | \( 1 + (-3.87 + 3.87i)T - 83iT^{2} \) |
| 89 | \( 1 + 10.5iT - 89T^{2} \) |
| 97 | \( 1 - 4.79T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41475737818282266783881404917, −9.917971768152596885163670008860, −9.086793650012414200396557016273, −7.72779445440699350372770226099, −7.18203858333800096911392562378, −6.38763720388997050613092777549, −4.87960389777786518138283114006, −4.28504090550333243845661123341, −2.76597401016716425837457780022, −1.48782101026264934274981288979,
1.06435891397457918388335596630, 2.79216940042220093883235971707, 3.72630509311624703233792704400, 5.21665010960341066415357972012, 5.90572771354779047353834187730, 6.77211232863474767092407560107, 8.138539823419838654766101519881, 8.813832724020219844956900489029, 9.566379230467781908680470645574, 10.29428528454004817976767014602