L(s) = 1 | + (1.82 − 1.82i)3-s + (0.707 + 0.707i)5-s − 4.50i·7-s − 3.68i·9-s + (−1.64 − 1.64i)11-s + (−1.51 + 1.51i)13-s + 2.58·15-s + 1.45·17-s + (−2.67 + 2.67i)19-s + (−8.24 − 8.24i)21-s − 2.37i·23-s + 1.00i·25-s + (−1.24 − 1.24i)27-s + (−0.924 + 0.924i)29-s + 7.20·31-s + ⋯ |
L(s) = 1 | + (1.05 − 1.05i)3-s + (0.316 + 0.316i)5-s − 1.70i·7-s − 1.22i·9-s + (−0.494 − 0.494i)11-s + (−0.421 + 0.421i)13-s + 0.667·15-s + 0.353·17-s + (−0.614 + 0.614i)19-s + (−1.79 − 1.79i)21-s − 0.495i·23-s + 0.200i·25-s + (−0.239 − 0.239i)27-s + (−0.171 + 0.171i)29-s + 1.29·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.122 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.122 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37164 - 1.55153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37164 - 1.55153i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-1.82 + 1.82i)T - 3iT^{2} \) |
| 7 | \( 1 + 4.50iT - 7T^{2} \) |
| 11 | \( 1 + (1.64 + 1.64i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.51 - 1.51i)T - 13iT^{2} \) |
| 17 | \( 1 - 1.45T + 17T^{2} \) |
| 19 | \( 1 + (2.67 - 2.67i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.37iT - 23T^{2} \) |
| 29 | \( 1 + (0.924 - 0.924i)T - 29iT^{2} \) |
| 31 | \( 1 - 7.20T + 31T^{2} \) |
| 37 | \( 1 + (-5.21 - 5.21i)T + 37iT^{2} \) |
| 41 | \( 1 + 6.41iT - 41T^{2} \) |
| 43 | \( 1 + (-7.65 - 7.65i)T + 43iT^{2} \) |
| 47 | \( 1 - 2.51T + 47T^{2} \) |
| 53 | \( 1 + (1.50 + 1.50i)T + 53iT^{2} \) |
| 59 | \( 1 + (5.31 + 5.31i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1.02 + 1.02i)T - 61iT^{2} \) |
| 67 | \( 1 + (-5.22 + 5.22i)T - 67iT^{2} \) |
| 71 | \( 1 - 1.92iT - 71T^{2} \) |
| 73 | \( 1 + 1.39iT - 73T^{2} \) |
| 79 | \( 1 + 5.06T + 79T^{2} \) |
| 83 | \( 1 + (2.44 - 2.44i)T - 83iT^{2} \) |
| 89 | \( 1 - 9.36iT - 89T^{2} \) |
| 97 | \( 1 - 18.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32475913691423100818947763671, −9.473469622520775047948288344550, −8.250900288661293274852491597735, −7.75759790918387796137304932240, −6.95947695258251717031604086856, −6.21984325298693990365255809409, −4.55737117604517642817524670146, −3.43858438081427747764553315276, −2.37992413019381972104989850182, −1.05176549287948235481567258361,
2.31553219028991107923101858604, 2.88221502157867078071753074321, 4.32890509980764508660372507913, 5.18944298054916215798788768079, 6.04665220566187116242300433888, 7.63441281631879404453004257063, 8.503544119979257337994149765773, 9.118549249634807163322668297785, 9.715292711429134791978746188517, 10.47813919969583780587524710557