Properties

Label 6-637e3-1.1-c5e3-0-0
Degree $6$
Conductor $258474853$
Sign $1$
Analytic cond. $1.06635\times 10^{6}$
Root an. cond. $10.1076$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·2-s − 8·3-s + 37·4-s − 56·5-s − 56·6-s + 179·8-s − 428·9-s − 392·10-s + 556·11-s − 296·12-s − 507·13-s + 448·15-s + 453·16-s − 908·17-s − 2.99e3·18-s − 148·19-s − 2.07e3·20-s + 3.89e3·22-s + 3.62e3·23-s − 1.43e3·24-s − 2.10e3·25-s − 3.54e3·26-s + 5.66e3·27-s − 8.75e3·29-s + 3.13e3·30-s + 2.60e3·31-s + 5.65e3·32-s + ⋯
L(s)  = 1  + 1.23·2-s − 0.513·3-s + 1.15·4-s − 1.00·5-s − 0.635·6-s + 0.988·8-s − 1.76·9-s − 1.23·10-s + 1.38·11-s − 0.593·12-s − 0.832·13-s + 0.514·15-s + 0.442·16-s − 0.762·17-s − 2.17·18-s − 0.0940·19-s − 1.15·20-s + 1.71·22-s + 1.42·23-s − 0.507·24-s − 0.674·25-s − 1.02·26-s + 1.49·27-s − 1.93·29-s + 0.636·30-s + 0.487·31-s + 0.975·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{6} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{6} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(7^{6} \cdot 13^{3}\)
Sign: $1$
Analytic conductor: \(1.06635\times 10^{6}\)
Root analytic conductor: \(10.1076\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 7^{6} \cdot 13^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(0.1289930234\)
\(L(\frac12)\) \(\approx\) \(0.1289930234\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
13$C_1$ \( ( 1 + p^{2} T )^{3} \)
good2$S_4\times C_2$ \( 1 - 7 T + 3 p^{2} T^{2} - p^{2} T^{3} + 3 p^{7} T^{4} - 7 p^{10} T^{5} + p^{15} T^{6} \)
3$S_4\times C_2$ \( 1 + 8 T + 164 p T^{2} + 188 p^{2} T^{3} + 164 p^{6} T^{4} + 8 p^{10} T^{5} + p^{15} T^{6} \)
5$S_4\times C_2$ \( 1 + 56 T + 5244 T^{2} + 276614 T^{3} + 5244 p^{5} T^{4} + 56 p^{10} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 - 556 T + 404733 T^{2} - 139390456 T^{3} + 404733 p^{5} T^{4} - 556 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 908 T + 2841744 T^{2} + 2500575674 T^{3} + 2841744 p^{5} T^{4} + 908 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 148 T + 2130325 T^{2} - 682929208 T^{3} + 2130325 p^{5} T^{4} + 148 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 - 3624 T + 873699 p T^{2} - 41604780336 T^{3} + 873699 p^{6} T^{4} - 3624 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 + 302 p T + 39253395 T^{2} + 138248111428 T^{3} + 39253395 p^{5} T^{4} + 302 p^{11} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 - 2608 T + 2424371 p T^{2} - 147722607136 T^{3} + 2424371 p^{6} T^{4} - 2608 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 20632 T + 307975484 T^{2} + 2907621938074 T^{3} + 307975484 p^{5} T^{4} + 20632 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 10998 T + 308859483 T^{2} - 62873899884 p T^{3} + 308859483 p^{5} T^{4} - 10998 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 2032 T + 360371500 T^{2} - 316056550292 T^{3} + 360371500 p^{5} T^{4} - 2032 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 34260 T + 987801576 T^{2} + 16411590765024 T^{3} + 987801576 p^{5} T^{4} + 34260 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 + 12570 T + 555161199 T^{2} + 6098024321412 T^{3} + 555161199 p^{5} T^{4} + 12570 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 63948 T + 3190897677 T^{2} + 93368635552632 T^{3} + 3190897677 p^{5} T^{4} + 63948 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 12754 T + 1380854375 T^{2} - 2893506921940 T^{3} + 1380854375 p^{5} T^{4} - 12754 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 56132 T + 4531972421 T^{2} - 149490176476712 T^{3} + 4531972421 p^{5} T^{4} - 56132 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 - 77580 T + 6033637848 T^{2} - 242549124990696 T^{3} + 6033637848 p^{5} T^{4} - 77580 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 - 43026 T + 5050110567 T^{2} - 184041607554844 T^{3} + 5050110567 p^{5} T^{4} - 43026 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 61872 T + 7712126445 T^{2} + 378722278144672 T^{3} + 7712126445 p^{5} T^{4} + 61872 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 98092 T + 9953216889 T^{2} + 754805508585544 T^{3} + 9953216889 p^{5} T^{4} + 98092 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 33694 T + 9155955927 T^{2} + 405186468141124 T^{3} + 9155955927 p^{5} T^{4} + 33694 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 + 76334 T + 27485398751 T^{2} + 1323114442249892 T^{3} + 27485398751 p^{5} T^{4} + 76334 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.801937290658767289640738317921, −8.180884509570005990246004134172, −8.041599056070998484841656242041, −7.73854804157332967363429886096, −7.41659703768048616207719261480, −6.85432928728914000931700749284, −6.69855866027665013903281137689, −6.69090176942339953514643825030, −6.11288094189113650286742710334, −5.96176459192709643870173655013, −5.37030606494177587173191001444, −5.22516561330640488591407759066, −5.04753111193162703159877512159, −4.54922078997170308608911213446, −4.12521399521755841079657754105, −4.09738659278077744122156275283, −3.39474808506685350572697071982, −3.25587431845492114059232838820, −3.06274685019086488117564903926, −2.37362719704660493213253539591, −2.15959120854663074461055694470, −1.62102603336058343373203425217, −1.20011376253173519299014413293, −0.52524136406640372320414541654, −0.05608665623576063065761499499, 0.05608665623576063065761499499, 0.52524136406640372320414541654, 1.20011376253173519299014413293, 1.62102603336058343373203425217, 2.15959120854663074461055694470, 2.37362719704660493213253539591, 3.06274685019086488117564903926, 3.25587431845492114059232838820, 3.39474808506685350572697071982, 4.09738659278077744122156275283, 4.12521399521755841079657754105, 4.54922078997170308608911213446, 5.04753111193162703159877512159, 5.22516561330640488591407759066, 5.37030606494177587173191001444, 5.96176459192709643870173655013, 6.11288094189113650286742710334, 6.69090176942339953514643825030, 6.69855866027665013903281137689, 6.85432928728914000931700749284, 7.41659703768048616207719261480, 7.73854804157332967363429886096, 8.041599056070998484841656242041, 8.180884509570005990246004134172, 8.801937290658767289640738317921

Graph of the $Z$-function along the critical line