L(s) = 1 | + (−0.929 + 1.60i)2-s + (−1.14 + 1.98i)3-s + (−0.726 − 1.25i)4-s − 0.197·5-s + (−2.13 − 3.69i)6-s − 1.01·8-s + (−1.13 − 1.95i)9-s + (0.183 − 0.317i)10-s + (2.09 − 3.62i)11-s + 3.33·12-s + (−2.72 − 2.36i)13-s + (0.226 − 0.392i)15-s + (2.39 − 4.15i)16-s + (−0.420 − 0.728i)17-s + 4.20·18-s + (−0.675 − 1.17i)19-s + ⋯ |
L(s) = 1 | + (−0.656 + 1.13i)2-s + (−0.662 + 1.14i)3-s + (−0.363 − 0.629i)4-s − 0.0882·5-s + (−0.870 − 1.50i)6-s − 0.359·8-s + (−0.377 − 0.653i)9-s + (0.0579 − 0.100i)10-s + (0.630 − 1.09i)11-s + 0.962·12-s + (−0.755 − 0.655i)13-s + (0.0584 − 0.101i)15-s + (0.599 − 1.03i)16-s + (−0.102 − 0.176i)17-s + 0.991·18-s + (−0.155 − 0.268i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0638i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0638i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.337142 + 0.0107672i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.337142 + 0.0107672i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (2.72 + 2.36i)T \) |
good | 2 | \( 1 + (0.929 - 1.60i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1.14 - 1.98i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 0.197T + 5T^{2} \) |
| 11 | \( 1 + (-2.09 + 3.62i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.420 + 0.728i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.675 + 1.17i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.05 + 3.56i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.11 + 7.13i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.28T + 31T^{2} \) |
| 37 | \( 1 + (1.52 - 2.63i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.69 - 4.67i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.66 + 4.61i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 11.6T + 47T^{2} \) |
| 53 | \( 1 - 4.64T + 53T^{2} \) |
| 59 | \( 1 + (3.02 + 5.24i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.68 - 9.84i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.69 - 11.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.98 - 5.17i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3.88T + 73T^{2} \) |
| 79 | \( 1 + 10.7T + 79T^{2} \) |
| 83 | \( 1 - 3.07T + 83T^{2} \) |
| 89 | \( 1 + (-5.99 + 10.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (9.73 + 16.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20830046578105199600210825037, −9.764534237548410500658802883807, −8.736699752844425021778693722228, −8.098323127218814549729461694287, −6.97095529371462665487716466358, −6.07625166947080600980723001809, −5.35571779068266942727777109476, −4.32324939539361719622541471875, −3.04892806531106091612971625469, −0.25451494206916139887286050188,
1.42096509711317658192033369289, 2.09719734668459183692693502641, 3.65184674771719494053593861782, 5.06417880846128309809437828047, 6.36374730901432109780482957369, 7.00258435204505576443813500166, 7.943170121072919682389682103829, 9.168542659255270562366005310476, 9.738516749194709021243573693572, 10.71066061276649844186598359675