L(s) = 1 | − 2i·2-s − 2·3-s − 2·4-s − i·5-s + 4i·6-s + 9-s − 2·10-s − 2i·11-s + 4·12-s + (−2 + 3i)13-s + 2i·15-s − 4·16-s − 6·17-s − 2i·18-s + 3i·19-s + 2i·20-s + ⋯ |
L(s) = 1 | − 1.41i·2-s − 1.15·3-s − 4-s − 0.447i·5-s + 1.63i·6-s + 0.333·9-s − 0.632·10-s − 0.603i·11-s + 1.15·12-s + (−0.554 + 0.832i)13-s + 0.516i·15-s − 16-s − 1.45·17-s − 0.471i·18-s + 0.688i·19-s + 0.447i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (2 - 3i)T \) |
good | 2 | \( 1 + 2iT - 2T^{2} \) |
| 3 | \( 1 + 2T + 3T^{2} \) |
| 5 | \( 1 + iT - 5T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 - 3iT - 19T^{2} \) |
| 23 | \( 1 + 3T + 23T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 - 3iT - 31T^{2} \) |
| 37 | \( 1 - 6iT - 37T^{2} \) |
| 41 | \( 1 + 10iT - 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 - 11iT - 47T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + 8iT - 59T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 - 14iT - 71T^{2} \) |
| 73 | \( 1 + 9iT - 73T^{2} \) |
| 79 | \( 1 + 9T + 79T^{2} \) |
| 83 | \( 1 + 11iT - 83T^{2} \) |
| 89 | \( 1 + 5iT - 89T^{2} \) |
| 97 | \( 1 - 9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22945587824056141253117744610, −9.241153728365169954617798729300, −8.487830139178467269102932636535, −6.91319204113181846728039349163, −6.13657304669700031967935774496, −4.90435296613595806539306822092, −4.21027217027925131061760650220, −2.79570865269400158326389904892, −1.45588659791679540377998257182, 0,
2.55512658368274325442703096465, 4.52976834198199688116305868134, 5.14506032513818329594458958615, 6.15981812264780274989695574912, 6.69857726537634178221491136525, 7.46845644063795032700415055949, 8.435868471268412834282927978456, 9.455999512320706268133758776845, 10.60188472996887045646898003745