Properties

Label 2-6336-8.5-c1-0-16
Degree $2$
Conductor $6336$
Sign $0.258 - 0.965i$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82i·5-s + i·11-s + 0.635i·13-s − 2.89·17-s + 4.89i·19-s + 0.635·23-s − 3.00·25-s − 6.29i·29-s − 2.19·31-s + 6.92i·37-s + 1.10·41-s + 0.898i·43-s + 6.29·47-s − 7·49-s − 4.09i·53-s + ⋯
L(s)  = 1  − 1.26i·5-s + 0.301i·11-s + 0.176i·13-s − 0.703·17-s + 1.12i·19-s + 0.132·23-s − 0.600·25-s − 1.16i·29-s − 0.393·31-s + 1.13i·37-s + 0.171·41-s + 0.137i·43-s + 0.917·47-s − 49-s − 0.563i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $0.258 - 0.965i$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6336} (3169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 0.258 - 0.965i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.031653268\)
\(L(\frac12)\) \(\approx\) \(1.031653268\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - iT \)
good5 \( 1 + 2.82iT - 5T^{2} \)
7 \( 1 + 7T^{2} \)
13 \( 1 - 0.635iT - 13T^{2} \)
17 \( 1 + 2.89T + 17T^{2} \)
19 \( 1 - 4.89iT - 19T^{2} \)
23 \( 1 - 0.635T + 23T^{2} \)
29 \( 1 + 6.29iT - 29T^{2} \)
31 \( 1 + 2.19T + 31T^{2} \)
37 \( 1 - 6.92iT - 37T^{2} \)
41 \( 1 - 1.10T + 41T^{2} \)
43 \( 1 - 0.898iT - 43T^{2} \)
47 \( 1 - 6.29T + 47T^{2} \)
53 \( 1 + 4.09iT - 53T^{2} \)
59 \( 1 - 13.7iT - 59T^{2} \)
61 \( 1 - 11.9iT - 61T^{2} \)
67 \( 1 + 5.79iT - 67T^{2} \)
71 \( 1 + 5.02T + 71T^{2} \)
73 \( 1 + 11.7T + 73T^{2} \)
79 \( 1 + 6.92T + 79T^{2} \)
83 \( 1 - 9.79iT - 83T^{2} \)
89 \( 1 + 3.79T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.251408074926295213917067071000, −7.61182890133763288009616056980, −6.76540121118684956505727264191, −5.93062076370992577380474448861, −5.34882091978154721824833902670, −4.41682613300528193494594913883, −4.13339883375354333188547415121, −2.90357023753256584848419572247, −1.86410942490445144415504179899, −1.05500268496502909291381261530, 0.27412587009344105598489200721, 1.77932992077777203492731166050, 2.74434471142083341202838692865, 3.24852564257003489086148419126, 4.18250692991937241148947002264, 5.05207637231783145087812128872, 5.86261368238343526355754529642, 6.64592350980053799089610958689, 7.07627380368831004704131945435, 7.70074937709520328702598810132

Graph of the $Z$-function along the critical line