Properties

Label 2-6336-12.11-c1-0-52
Degree $2$
Conductor $6336$
Sign $0.577 + 0.816i$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.08i·5-s + 4.08i·7-s + 11-s + 5.74·13-s − 1.62i·17-s − 6.07i·19-s + 6.92·23-s − 11.6·25-s + 3.46i·29-s − 1.83i·31-s + 16.6·35-s − 5.47·37-s − 1.83i·41-s + 5.75i·43-s + 7.21·47-s + ⋯
L(s)  = 1  − 1.82i·5-s + 1.54i·7-s + 0.301·11-s + 1.59·13-s − 0.395i·17-s − 1.39i·19-s + 1.44·23-s − 2.33·25-s + 0.643i·29-s − 0.329i·31-s + 2.81·35-s − 0.899·37-s − 0.286i·41-s + 0.878i·43-s + 1.05·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $0.577 + 0.816i$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6336} (3455, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 0.577 + 0.816i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.281212695\)
\(L(\frac12)\) \(\approx\) \(2.281212695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 4.08iT - 5T^{2} \)
7 \( 1 - 4.08iT - 7T^{2} \)
13 \( 1 - 5.74T + 13T^{2} \)
17 \( 1 + 1.62iT - 17T^{2} \)
19 \( 1 + 6.07iT - 19T^{2} \)
23 \( 1 - 6.92T + 23T^{2} \)
29 \( 1 - 3.46iT - 29T^{2} \)
31 \( 1 + 1.83iT - 31T^{2} \)
37 \( 1 + 5.47T + 37T^{2} \)
41 \( 1 + 1.83iT - 41T^{2} \)
43 \( 1 - 5.75iT - 43T^{2} \)
47 \( 1 - 7.21T + 47T^{2} \)
53 \( 1 - 11.0iT - 53T^{2} \)
59 \( 1 - 6.65T + 59T^{2} \)
61 \( 1 - 1.74T + 61T^{2} \)
67 \( 1 + 11.9iT - 67T^{2} \)
71 \( 1 - 6.92T + 71T^{2} \)
73 \( 1 - 4.65T + 73T^{2} \)
79 \( 1 - 0.825iT - 79T^{2} \)
83 \( 1 + 4.67T + 83T^{2} \)
89 \( 1 + 3.00iT - 89T^{2} \)
97 \( 1 + 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.343946015797534811023020554818, −7.25413370975604603076667512243, −6.32472904678980193977635364431, −5.63917653585219476480816695060, −5.10297335449293302254679158768, −4.53694012950601386070719645898, −3.51880677428042463746858939016, −2.55388101684956775118197880807, −1.51027461967043496225278876161, −0.73655421591423925575656701931, 0.958396921994699882290041829666, 1.96119921551081672734610617960, 3.19511122653511172443350006756, 3.70594465696447321106635975738, 4.08785853442779648809754138785, 5.49970730813618361054576111461, 6.23674093492483725941042430771, 6.88390259180888138735936244884, 7.16458110453779846229311553914, 8.034080091455306814973096735266

Graph of the $Z$-function along the critical line