Properties

Label 2-6336-33.32-c1-0-82
Degree $2$
Conductor $6336$
Sign $-0.841 + 0.540i$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.52i·5-s − 4.72i·7-s + (−0.146 + 3.31i)11-s − 2.10i·13-s + 4.68·17-s − 0.206i·19-s − 4.52i·23-s − 7.39·25-s − 7.66·29-s − 2.97·31-s + 16.6·35-s − 6.97·37-s − 5.27·41-s − 5.86i·43-s + 7.76i·47-s + ⋯
L(s)  = 1  + 1.57i·5-s − 1.78i·7-s + (−0.0441 + 0.999i)11-s − 0.584i·13-s + 1.13·17-s − 0.0474i·19-s − 0.942i·23-s − 1.47·25-s − 1.42·29-s − 0.534·31-s + 2.81·35-s − 1.14·37-s − 0.823·41-s − 0.894i·43-s + 1.13i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.841 + 0.540i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.841 + 0.540i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $-0.841 + 0.540i$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6336} (2177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ -0.841 + 0.540i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2895002656\)
\(L(\frac12)\) \(\approx\) \(0.2895002656\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (0.146 - 3.31i)T \)
good5 \( 1 - 3.52iT - 5T^{2} \)
7 \( 1 + 4.72iT - 7T^{2} \)
13 \( 1 + 2.10iT - 13T^{2} \)
17 \( 1 - 4.68T + 17T^{2} \)
19 \( 1 + 0.206iT - 19T^{2} \)
23 \( 1 + 4.52iT - 23T^{2} \)
29 \( 1 + 7.66T + 29T^{2} \)
31 \( 1 + 2.97T + 31T^{2} \)
37 \( 1 + 6.97T + 37T^{2} \)
41 \( 1 + 5.27T + 41T^{2} \)
43 \( 1 + 5.86iT - 43T^{2} \)
47 \( 1 - 7.76iT - 47T^{2} \)
53 \( 1 - 6.34iT - 53T^{2} \)
59 \( 1 - 2.41iT - 59T^{2} \)
61 \( 1 + 14.3iT - 61T^{2} \)
67 \( 1 - 13.3T + 67T^{2} \)
71 \( 1 + 2.10iT - 71T^{2} \)
73 \( 1 - 13.1iT - 73T^{2} \)
79 \( 1 + 12.7iT - 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 - 4.24iT - 89T^{2} \)
97 \( 1 + 10.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57932863508684289109263076911, −7.02940117147005306809840721188, −6.68975610305363070253683924767, −5.68131798817636742987052155580, −4.79678195303918273678552806457, −3.78306566475457900204799478299, −3.49376721564221713321602758995, −2.48475984213997707066165008384, −1.43493314705180598595638019590, −0.07064350362245903598432020322, 1.33696788864502401530829111240, 2.01670488741429505754183125293, 3.19114753819138758898047062329, 3.90406279094941980568594966272, 5.08248910442306137144931588266, 5.50489634547235010015186792143, 5.76561523000226768951531045484, 6.87966938899113675316362286099, 7.951382771823083994561745806072, 8.424489726006587074286307314528

Graph of the $Z$-function along the critical line