Properties

Label 2-6336-33.32-c1-0-48
Degree $2$
Conductor $6336$
Sign $0.401 + 0.915i$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.92i·5-s + 2.07i·7-s + (−3.24 − 0.665i)11-s + 5.34i·13-s + 0.941·17-s − 4.59i·19-s + 6.67i·23-s − 10.4·25-s + 6.61·29-s − 7.55·31-s + 8.17·35-s + 3.55·37-s + 12.0·41-s + 1.06i·43-s − 0.313i·47-s + ⋯
L(s)  = 1  − 1.75i·5-s + 0.786i·7-s + (−0.979 − 0.200i)11-s + 1.48i·13-s + 0.228·17-s − 1.05i·19-s + 1.39i·23-s − 2.08·25-s + 1.22·29-s − 1.35·31-s + 1.38·35-s + 0.584·37-s + 1.88·41-s + 0.161i·43-s − 0.0457i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.401 + 0.915i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.401 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $0.401 + 0.915i$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6336} (2177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 0.401 + 0.915i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.592786648\)
\(L(\frac12)\) \(\approx\) \(1.592786648\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (3.24 + 0.665i)T \)
good5 \( 1 + 3.92iT - 5T^{2} \)
7 \( 1 - 2.07iT - 7T^{2} \)
13 \( 1 - 5.34iT - 13T^{2} \)
17 \( 1 - 0.941T + 17T^{2} \)
19 \( 1 + 4.59iT - 19T^{2} \)
23 \( 1 - 6.67iT - 23T^{2} \)
29 \( 1 - 6.61T + 29T^{2} \)
31 \( 1 + 7.55T + 31T^{2} \)
37 \( 1 - 3.55T + 37T^{2} \)
41 \( 1 - 12.0T + 41T^{2} \)
43 \( 1 - 1.06iT - 43T^{2} \)
47 \( 1 + 0.313iT - 47T^{2} \)
53 \( 1 + 1.10iT - 53T^{2} \)
59 \( 1 + 12.0iT - 59T^{2} \)
61 \( 1 + 1.64iT - 61T^{2} \)
67 \( 1 + 5.88T + 67T^{2} \)
71 \( 1 + 5.34iT - 71T^{2} \)
73 \( 1 + 11.3iT - 73T^{2} \)
79 \( 1 + 10.1iT - 79T^{2} \)
83 \( 1 - 13.4T + 83T^{2} \)
89 \( 1 - 4.24iT - 89T^{2} \)
97 \( 1 - 7.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.939498121782842704543248239562, −7.43332298947662193995760275724, −6.30201236688893939045225188150, −5.64780238355423022739088369239, −4.94170431935442946820585751226, −4.57586954721444586100878054524, −3.55614520374784718741859930596, −2.39752970305435452347302161993, −1.65102469789100842594069709855, −0.53126780489476157606439374559, 0.802133509981442754617012046973, 2.39235935579456141365728410345, 2.83344462001460803479159387128, 3.63749480589135947460441011605, 4.39950115723436522209377816877, 5.55650797484765563567207690057, 6.03821353848827590183104563844, 6.85636832220717662634763074318, 7.65168049855850021657717282669, 7.71120722208555371944071409279

Graph of the $Z$-function along the critical line