L(s) = 1 | − 3.92i·5-s + 2.07i·7-s + (−3.24 − 0.665i)11-s + 5.34i·13-s + 0.941·17-s − 4.59i·19-s + 6.67i·23-s − 10.4·25-s + 6.61·29-s − 7.55·31-s + 8.17·35-s + 3.55·37-s + 12.0·41-s + 1.06i·43-s − 0.313i·47-s + ⋯ |
L(s) = 1 | − 1.75i·5-s + 0.786i·7-s + (−0.979 − 0.200i)11-s + 1.48i·13-s + 0.228·17-s − 1.05i·19-s + 1.39i·23-s − 2.08·25-s + 1.22·29-s − 1.35·31-s + 1.38·35-s + 0.584·37-s + 1.88·41-s + 0.161i·43-s − 0.0457i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.401 + 0.915i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.401 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.592786648\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.592786648\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (3.24 + 0.665i)T \) |
good | 5 | \( 1 + 3.92iT - 5T^{2} \) |
| 7 | \( 1 - 2.07iT - 7T^{2} \) |
| 13 | \( 1 - 5.34iT - 13T^{2} \) |
| 17 | \( 1 - 0.941T + 17T^{2} \) |
| 19 | \( 1 + 4.59iT - 19T^{2} \) |
| 23 | \( 1 - 6.67iT - 23T^{2} \) |
| 29 | \( 1 - 6.61T + 29T^{2} \) |
| 31 | \( 1 + 7.55T + 31T^{2} \) |
| 37 | \( 1 - 3.55T + 37T^{2} \) |
| 41 | \( 1 - 12.0T + 41T^{2} \) |
| 43 | \( 1 - 1.06iT - 43T^{2} \) |
| 47 | \( 1 + 0.313iT - 47T^{2} \) |
| 53 | \( 1 + 1.10iT - 53T^{2} \) |
| 59 | \( 1 + 12.0iT - 59T^{2} \) |
| 61 | \( 1 + 1.64iT - 61T^{2} \) |
| 67 | \( 1 + 5.88T + 67T^{2} \) |
| 71 | \( 1 + 5.34iT - 71T^{2} \) |
| 73 | \( 1 + 11.3iT - 73T^{2} \) |
| 79 | \( 1 + 10.1iT - 79T^{2} \) |
| 83 | \( 1 - 13.4T + 83T^{2} \) |
| 89 | \( 1 - 4.24iT - 89T^{2} \) |
| 97 | \( 1 - 7.67T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.939498121782842704543248239562, −7.43332298947662193995760275724, −6.30201236688893939045225188150, −5.64780238355423022739088369239, −4.94170431935442946820585751226, −4.57586954721444586100878054524, −3.55614520374784718741859930596, −2.39752970305435452347302161993, −1.65102469789100842594069709855, −0.53126780489476157606439374559,
0.802133509981442754617012046973, 2.39235935579456141365728410345, 2.83344462001460803479159387128, 3.63749480589135947460441011605, 4.39950115723436522209377816877, 5.55650797484765563567207690057, 6.03821353848827590183104563844, 6.85636832220717662634763074318, 7.65168049855850021657717282669, 7.71120722208555371944071409279