L(s) = 1 | + (0.707 − 0.707i)7-s − 2.16i·11-s + (0.457 + 0.457i)13-s + (0.704 + 0.704i)17-s + 2.08i·19-s + (−0.819 + 0.819i)23-s − 5.75·29-s − 4.16·31-s + (7.23 − 7.23i)37-s − 4.82i·41-s + (3.98 + 3.98i)43-s + (3.24 + 3.24i)47-s − 1.00i·49-s + (7.01 − 7.01i)53-s + 4.69·59-s + ⋯ |
L(s) = 1 | + (0.267 − 0.267i)7-s − 0.651i·11-s + (0.126 + 0.126i)13-s + (0.170 + 0.170i)17-s + 0.477i·19-s + (−0.170 + 0.170i)23-s − 1.06·29-s − 0.748·31-s + (1.18 − 1.18i)37-s − 0.754i·41-s + (0.607 + 0.607i)43-s + (0.472 + 0.472i)47-s − 0.142i·49-s + (0.963 − 0.963i)53-s + 0.611·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.374 + 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.374 + 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.748113294\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.748113294\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
good | 11 | \( 1 + 2.16iT - 11T^{2} \) |
| 13 | \( 1 + (-0.457 - 0.457i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.704 - 0.704i)T + 17iT^{2} \) |
| 19 | \( 1 - 2.08iT - 19T^{2} \) |
| 23 | \( 1 + (0.819 - 0.819i)T - 23iT^{2} \) |
| 29 | \( 1 + 5.75T + 29T^{2} \) |
| 31 | \( 1 + 4.16T + 31T^{2} \) |
| 37 | \( 1 + (-7.23 + 7.23i)T - 37iT^{2} \) |
| 41 | \( 1 + 4.82iT - 41T^{2} \) |
| 43 | \( 1 + (-3.98 - 3.98i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.24 - 3.24i)T + 47iT^{2} \) |
| 53 | \( 1 + (-7.01 + 7.01i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.69T + 59T^{2} \) |
| 61 | \( 1 - 0.627T + 61T^{2} \) |
| 67 | \( 1 + (-8.71 + 8.71i)T - 67iT^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 + (-0.228 - 0.228i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.49iT - 79T^{2} \) |
| 83 | \( 1 + (-2.75 + 2.75i)T - 83iT^{2} \) |
| 89 | \( 1 + 15.2T + 89T^{2} \) |
| 97 | \( 1 + (5.18 - 5.18i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.80799113176254199854654904199, −7.37219515953313640598549974348, −6.42905403745029994481228484974, −5.74037593188779907285610356358, −5.18640705271676618256566575751, −4.02697950797386645216173788182, −3.69494072305990648667099744305, −2.54589271670421984198234738360, −1.64027981375035847202364308658, −0.50363252613536137606852159737,
0.991380839431887853732232588118, 2.08694365758968320035108130544, 2.81672212845011004314284831049, 3.88266932372186527396351449789, 4.52756952791615012178343622246, 5.39730489257901807499629769478, 5.91904445471751319726895166844, 6.94618883014763038939983141910, 7.35846779018372709791167086638, 8.217003107656108972718512035639