L(s) = 1 | + (0.707 + 0.707i)7-s + 3.59i·11-s + (3.79 − 3.79i)13-s + (−1.19 + 1.19i)17-s + 7.28i·19-s + (0.0711 + 0.0711i)23-s + 5.45·29-s + 9.74·31-s + (−1.96 − 1.96i)37-s − 3.10i·41-s + (2.72 − 2.72i)43-s + (−7.38 + 7.38i)47-s + 1.00i·49-s + (−8.55 − 8.55i)53-s + 4.94·59-s + ⋯ |
L(s) = 1 | + (0.267 + 0.267i)7-s + 1.08i·11-s + (1.05 − 1.05i)13-s + (−0.290 + 0.290i)17-s + 1.67i·19-s + (0.0148 + 0.0148i)23-s + 1.01·29-s + 1.74·31-s + (−0.322 − 0.322i)37-s − 0.484i·41-s + (0.415 − 0.415i)43-s + (−1.07 + 1.07i)47-s + 0.142i·49-s + (−1.17 − 1.17i)53-s + 0.643·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.374 - 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.374 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.046664612\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.046664612\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 11 | \( 1 - 3.59iT - 11T^{2} \) |
| 13 | \( 1 + (-3.79 + 3.79i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.19 - 1.19i)T - 17iT^{2} \) |
| 19 | \( 1 - 7.28iT - 19T^{2} \) |
| 23 | \( 1 + (-0.0711 - 0.0711i)T + 23iT^{2} \) |
| 29 | \( 1 - 5.45T + 29T^{2} \) |
| 31 | \( 1 - 9.74T + 31T^{2} \) |
| 37 | \( 1 + (1.96 + 1.96i)T + 37iT^{2} \) |
| 41 | \( 1 + 3.10iT - 41T^{2} \) |
| 43 | \( 1 + (-2.72 + 2.72i)T - 43iT^{2} \) |
| 47 | \( 1 + (7.38 - 7.38i)T - 47iT^{2} \) |
| 53 | \( 1 + (8.55 + 8.55i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.94T + 59T^{2} \) |
| 61 | \( 1 + 10.1T + 61T^{2} \) |
| 67 | \( 1 + (1.00 + 1.00i)T + 67iT^{2} \) |
| 71 | \( 1 - 7.09iT - 71T^{2} \) |
| 73 | \( 1 + (-1.53 + 1.53i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.98iT - 79T^{2} \) |
| 83 | \( 1 + (-7.99 - 7.99i)T + 83iT^{2} \) |
| 89 | \( 1 + 14.2T + 89T^{2} \) |
| 97 | \( 1 + (0.0634 + 0.0634i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.150587135044519080910417998281, −7.67895065826733307051726242008, −6.60718066670042126238178454495, −6.12537265895655352776404496159, −5.32869373606766076151269439396, −4.56842628422930385767937513871, −3.79163089618067174400471116566, −2.95378051509534111291849232105, −1.94627452716440591344200809534, −1.08269255066046519906353865807,
0.58733243615575621984243688248, 1.51656178326088743967206623129, 2.74000571596630964367475931934, 3.35232030931907887688643535138, 4.53250609823754991416072383913, 4.72561860032086173169355449815, 5.99644472048374860991354761531, 6.46335944158857654232637606408, 7.06912413357003060073202583737, 8.057875857879355495784849391804