L(s) = 1 | + (0.707 + 0.707i)7-s + 2.58i·11-s + (0.585 − 0.585i)13-s + (2.82 − 2.82i)17-s + 2.82i·19-s + (3.82 + 3.82i)23-s + 1.41·29-s + 2.82·31-s + (−2.58 − 2.58i)37-s − 6.82i·41-s + (1.17 − 1.17i)43-s + (1.17 − 1.17i)47-s + 1.00i·49-s + (2.17 + 2.17i)53-s + 4·59-s + ⋯ |
L(s) = 1 | + (0.267 + 0.267i)7-s + 0.779i·11-s + (0.162 − 0.162i)13-s + (0.685 − 0.685i)17-s + 0.648i·19-s + (0.798 + 0.798i)23-s + 0.262·29-s + 0.508·31-s + (−0.425 − 0.425i)37-s − 1.06i·41-s + (0.178 − 0.178i)43-s + (0.170 − 0.170i)47-s + 0.142i·49-s + (0.298 + 0.298i)53-s + 0.520·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.088132503\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.088132503\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 11 | \( 1 - 2.58iT - 11T^{2} \) |
| 13 | \( 1 + (-0.585 + 0.585i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.82 + 2.82i)T - 17iT^{2} \) |
| 19 | \( 1 - 2.82iT - 19T^{2} \) |
| 23 | \( 1 + (-3.82 - 3.82i)T + 23iT^{2} \) |
| 29 | \( 1 - 1.41T + 29T^{2} \) |
| 31 | \( 1 - 2.82T + 31T^{2} \) |
| 37 | \( 1 + (2.58 + 2.58i)T + 37iT^{2} \) |
| 41 | \( 1 + 6.82iT - 41T^{2} \) |
| 43 | \( 1 + (-1.17 + 1.17i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.17 + 1.17i)T - 47iT^{2} \) |
| 53 | \( 1 + (-2.17 - 2.17i)T + 53iT^{2} \) |
| 59 | \( 1 - 4T + 59T^{2} \) |
| 61 | \( 1 + 9.31T + 61T^{2} \) |
| 67 | \( 1 + (-5.41 - 5.41i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.242iT - 71T^{2} \) |
| 73 | \( 1 + (10.2 - 10.2i)T - 73iT^{2} \) |
| 79 | \( 1 + 1.65iT - 79T^{2} \) |
| 83 | \( 1 + (-6.82 - 6.82i)T + 83iT^{2} \) |
| 89 | \( 1 + 5.17T + 89T^{2} \) |
| 97 | \( 1 + (-2.24 - 2.24i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.099970449100116056444766188157, −7.34977701162994190415051634793, −6.93551332865190729988421306438, −5.82972882311527177109269646849, −5.35977466804560778001311071508, −4.57260008156759249076025571368, −3.72084846444805195986343186162, −2.87647428814967395741598764781, −1.95571160104445476486158577881, −0.968017029660703388726084305304,
0.64268491282053440805080122975, 1.58006972985659396906555074186, 2.78814268942357737626612820938, 3.41603003616537279001874124156, 4.40370333015771100390506078748, 4.98497573925625796559698187578, 5.92597427064070190170271070508, 6.47448598249051925359707324506, 7.24619010347408475802907217023, 8.044685714379975368553781679041