L(s) = 1 | + (2.60 − 0.464i)7-s + (3.45 − 1.99i)11-s + 2.37i·13-s + (−1.11 − 1.93i)17-s + (−2.78 − 1.61i)19-s + (−2.87 − 1.65i)23-s + 4.57i·29-s + (6.29 − 3.63i)31-s + (2.07 − 3.59i)37-s − 0.917·41-s + 1.34·43-s + (1.17 − 2.03i)47-s + (6.56 − 2.42i)49-s + (4.46 − 2.57i)53-s + (−2.20 − 3.81i)59-s + ⋯ |
L(s) = 1 | + (0.984 − 0.175i)7-s + (1.04 − 0.601i)11-s + 0.659i·13-s + (−0.270 − 0.468i)17-s + (−0.640 − 0.369i)19-s + (−0.599 − 0.345i)23-s + 0.849i·29-s + (1.13 − 0.652i)31-s + (0.340 − 0.590i)37-s − 0.143·41-s + 0.205·43-s + (0.171 − 0.297i)47-s + (0.938 − 0.345i)49-s + (0.613 − 0.354i)53-s + (−0.286 − 0.496i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 + 0.786i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.617 + 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.301364764\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.301364764\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.60 + 0.464i)T \) |
good | 11 | \( 1 + (-3.45 + 1.99i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.37iT - 13T^{2} \) |
| 17 | \( 1 + (1.11 + 1.93i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.78 + 1.61i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.87 + 1.65i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4.57iT - 29T^{2} \) |
| 31 | \( 1 + (-6.29 + 3.63i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.07 + 3.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.917T + 41T^{2} \) |
| 43 | \( 1 - 1.34T + 43T^{2} \) |
| 47 | \( 1 + (-1.17 + 2.03i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.46 + 2.57i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.20 + 3.81i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.38 - 2.53i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.01 + 1.76i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 16.6iT - 71T^{2} \) |
| 73 | \( 1 + (-1.34 + 0.776i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.89 - 3.27i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 0.917T + 83T^{2} \) |
| 89 | \( 1 + (-4.05 + 7.01i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 15.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.030176848471879505961530821790, −7.17554387594863219767323986174, −6.55687467920135266662062495664, −5.89981467851593025362625730030, −4.92099875997702768294321811235, −4.33346693085112689609136000391, −3.67414928546953396062315243655, −2.50209869216533017907674978389, −1.69283757217007666987481483009, −0.64731533155585823472993219745,
1.08039099759661752425869929772, 1.89728842837373655153104311858, 2.78324031203511159473696263559, 4.02702575501034069885986582982, 4.34985718005708573292089418125, 5.30310567833256957798348819865, 6.03059038183533507688169986472, 6.69882227080013525729359417892, 7.51453063796575424494717961275, 8.256830201127162267042515566284