L(s) = 1 | + (−0.651 + 2.56i)7-s + (−0.362 + 0.209i)11-s + 1.12i·13-s + (2.46 + 4.27i)17-s + (4.27 + 2.46i)19-s + (6.18 + 3.57i)23-s + 4.95i·29-s + (−5.51 + 3.18i)31-s + (4.42 − 7.65i)37-s − 12.1·41-s + 6.05·43-s + (3.85 − 6.67i)47-s + (−6.15 − 3.34i)49-s + (−8.93 + 5.16i)53-s + (−0.569 − 0.986i)59-s + ⋯ |
L(s) = 1 | + (−0.246 + 0.969i)7-s + (−0.109 + 0.0630i)11-s + 0.312i·13-s + (0.598 + 1.03i)17-s + (0.981 + 0.566i)19-s + (1.28 + 0.744i)23-s + 0.919i·29-s + (−0.991 + 0.572i)31-s + (0.726 − 1.25i)37-s − 1.90·41-s + 0.922·43-s + (0.562 − 0.973i)47-s + (−0.878 − 0.477i)49-s + (−1.22 + 0.708i)53-s + (−0.0741 − 0.128i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.547 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.547 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.591113738\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.591113738\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.651 - 2.56i)T \) |
good | 11 | \( 1 + (0.362 - 0.209i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 1.12iT - 13T^{2} \) |
| 17 | \( 1 + (-2.46 - 4.27i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.27 - 2.46i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.18 - 3.57i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4.95iT - 29T^{2} \) |
| 31 | \( 1 + (5.51 - 3.18i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.42 + 7.65i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 12.1T + 41T^{2} \) |
| 43 | \( 1 - 6.05T + 43T^{2} \) |
| 47 | \( 1 + (-3.85 + 6.67i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (8.93 - 5.16i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.569 + 0.986i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-10.9 - 6.31i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.14 + 8.91i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.87iT - 71T^{2} \) |
| 73 | \( 1 + (-4.00 + 2.31i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.38 + 4.12i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 12.1T + 83T^{2} \) |
| 89 | \( 1 + (-2.33 + 4.04i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 7.49iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.329409402930069098332083307645, −7.52423093351455000093657219091, −6.95273249877539592806560583527, −6.00580782366936221959246789855, −5.48245587885126822186657810348, −4.89094071245465329181183224466, −3.62320679623099278729876515182, −3.24171567507993308805770780092, −2.10143948613645600212923437929, −1.27330935514490298216110931873,
0.43929784707419004972255588193, 1.24539550230096654439095804187, 2.70321668143087604835479437307, 3.21536037806053794425960196267, 4.18010020752438530817920172632, 4.93992509383852992089627564476, 5.55107278821154051250239307846, 6.58456935319619668323583919006, 7.10012202455430134712994545700, 7.70836877260828052783385866749