L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−1.52 − 1.63i)5-s + (1.13 + 2.38i)7-s + 0.999i·8-s + (−0.499 − 2.17i)10-s + (0.866 + 1.5i)11-s + 6.50i·13-s + (−0.209 + 2.63i)14-s + (−0.5 + 0.866i)16-s + (1.73 − i)17-s + (1.63 − 2.83i)19-s + (0.656 − 2.13i)20-s + 1.73i·22-s + (2.83 + 1.63i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.680 − 0.732i)5-s + (0.429 + 0.902i)7-s + 0.353i·8-s + (−0.158 − 0.689i)10-s + (0.261 + 0.452i)11-s + 1.80i·13-s + (−0.0559 + 0.704i)14-s + (−0.125 + 0.216i)16-s + (0.420 − 0.242i)17-s + (0.375 − 0.650i)19-s + (0.146 − 0.477i)20-s + 0.369i·22-s + (0.591 + 0.341i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.308 - 0.951i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.308 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56644 + 1.13839i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56644 + 1.13839i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.52 + 1.63i)T \) |
| 7 | \( 1 + (-1.13 - 2.38i)T \) |
good | 11 | \( 1 + (-0.866 - 1.5i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6.50iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 + i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.63 + 2.83i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.83 - 1.63i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 8.24T + 29T^{2} \) |
| 31 | \( 1 + (0.137 + 0.238i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.362 + 0.209i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.20T + 41T^{2} \) |
| 43 | \( 1 - 6.09iT - 43T^{2} \) |
| 47 | \( 1 + (8.03 + 4.63i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.53 - 3.77i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.85 + 10.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.27 + 9.13i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.54 + 4.35i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 11.3T + 71T^{2} \) |
| 73 | \( 1 + (4.54 - 2.62i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.13 + 3.70i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 8.27iT - 83T^{2} \) |
| 89 | \( 1 + (-4.77 + 8.27i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28519841270200322039660404632, −9.598937675708734223830474168466, −8.942168144007361492624076126198, −8.133863588175962922775993180400, −7.14376739699208823461553326756, −6.28224846056581781623524082786, −4.89246625996841000451974435859, −4.64500601301302180878621889373, −3.24939882714938864378452807053, −1.73550558481644195893838762308,
0.965333450820103218499543335589, 2.94135932817316883878685630751, 3.60473589023565443272435915217, 4.70771640125856704149385777738, 5.79961332928262825389567516599, 6.84200275163671299338081170018, 7.75284957208196275160353324331, 8.410932887747564369995750089624, 10.14433988534802961857872743034, 10.44049605972445264404573296015